Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313169532> ?p ?o ?g. }
- W4313169532 endingPage "3348" @default.
- W4313169532 startingPage "3336" @default.
- W4313169532 abstract "Test the safety of Autonomous Driving Systems (ADS) with realistic traffic conditions is important to the insurance industry, legislators, and third-party technical services. However, the scarcity of risky driving events distributed in real-world driving often makes sampling inefficient. In this paper, we propose a unified and hierarchical testing framework for efficient and unbiased safety tests of ADS. We first extract the risk subspace from the Naturalistic Driving Data (NDD) with defined safety measures. Subsequently, we use the Gaussian Copula method to accurately model the subspace joint probability density function (PDF). We further formulate a Kriging model-based optimization problem for finding the appropriate Importance Sampling (IS) parameters, where the Kriging model is trained iteratively within limited computational resources. Eventually, the risky concrete scenarios library is generated using the obtained Importance Sampling parameters. With the simulation results skewered back to the original risk subspace, the ADS probability of failure (e.g., crash rate) can thus be accurately and unbiasedly estimated. Experiment results show that using 0.94% computational resources, the Kriging surrogate model captures 96.04% of ADS crashes with at least 90.25% precision. On crash rate estimation, our proposed method achieves a consistent result with that of Monte Carlo simulation, provided that the relative error does not exceed 10% while improving the testing efficiency by up to 6,539 times." @default.
- W4313169532 created "2023-01-06" @default.
- W4313169532 creator A5005920411 @default.
- W4313169532 creator A5023443554 @default.
- W4313169532 creator A5025424653 @default.
- W4313169532 creator A5038582529 @default.
- W4313169532 creator A5079510458 @default.
- W4313169532 creator A5080033231 @default.
- W4313169532 creator A5087331181 @default.
- W4313169532 date "2023-05-01" @default.
- W4313169532 modified "2023-09-29" @default.
- W4313169532 title "Efficient and Unbiased Safety Test for Autonomous Driving Systems" @default.
- W4313169532 cites W2018044188 @default.
- W4313169532 cites W2032780471 @default.
- W4313169532 cites W2169601390 @default.
- W4313169532 cites W2171993497 @default.
- W4313169532 cites W2189348500 @default.
- W4313169532 cites W2438413413 @default.
- W4313169532 cites W2511072509 @default.
- W4313169532 cites W2521921275 @default.
- W4313169532 cites W2584539651 @default.
- W4313169532 cites W2739735772 @default.
- W4313169532 cites W2775678306 @default.
- W4313169532 cites W2797143217 @default.
- W4313169532 cites W2805334546 @default.
- W4313169532 cites W2885911069 @default.
- W4313169532 cites W2896642734 @default.
- W4313169532 cites W2896921100 @default.
- W4313169532 cites W2897535010 @default.
- W4313169532 cites W2904011892 @default.
- W4313169532 cites W2904929882 @default.
- W4313169532 cites W2923088732 @default.
- W4313169532 cites W2943847575 @default.
- W4313169532 cites W2962702177 @default.
- W4313169532 cites W2963184890 @default.
- W4313169532 cites W2963290958 @default.
- W4313169532 cites W2963343677 @default.
- W4313169532 cites W2974752735 @default.
- W4313169532 cites W2991158008 @default.
- W4313169532 cites W3004750882 @default.
- W4313169532 cites W3009845492 @default.
- W4313169532 cites W3022552172 @default.
- W4313169532 cites W3032950445 @default.
- W4313169532 cites W3046335568 @default.
- W4313169532 cites W3095035924 @default.
- W4313169532 cites W3117054268 @default.
- W4313169532 cites W3123050036 @default.
- W4313169532 cites W3127647470 @default.
- W4313169532 cites W3161651929 @default.
- W4313169532 cites W3184179613 @default.
- W4313169532 cites W3188516938 @default.
- W4313169532 cites W3206558114 @default.
- W4313169532 cites W4200369088 @default.
- W4313169532 cites W4206087398 @default.
- W4313169532 cites W4211042066 @default.
- W4313169532 cites W565786554 @default.
- W4313169532 doi "https://doi.org/10.1109/tiv.2022.3213310" @default.
- W4313169532 hasPublicationYear "2023" @default.
- W4313169532 type Work @default.
- W4313169532 citedByCount "1" @default.
- W4313169532 countsByYear W43131695322023 @default.
- W4313169532 crossrefType "journal-article" @default.
- W4313169532 hasAuthorship W4313169532A5005920411 @default.
- W4313169532 hasAuthorship W4313169532A5023443554 @default.
- W4313169532 hasAuthorship W4313169532A5025424653 @default.
- W4313169532 hasAuthorship W4313169532A5038582529 @default.
- W4313169532 hasAuthorship W4313169532A5079510458 @default.
- W4313169532 hasAuthorship W4313169532A5080033231 @default.
- W4313169532 hasAuthorship W4313169532A5087331181 @default.
- W4313169532 hasConcept C105795698 @default.
- W4313169532 hasConcept C106131492 @default.
- W4313169532 hasConcept C118671147 @default.
- W4313169532 hasConcept C119857082 @default.
- W4313169532 hasConcept C126255220 @default.
- W4313169532 hasConcept C140779682 @default.
- W4313169532 hasConcept C149782125 @default.
- W4313169532 hasConcept C154945302 @default.
- W4313169532 hasConcept C19499675 @default.
- W4313169532 hasConcept C31972630 @default.
- W4313169532 hasConcept C32834561 @default.
- W4313169532 hasConcept C33923547 @default.
- W4313169532 hasConcept C41008148 @default.
- W4313169532 hasConcept C49937458 @default.
- W4313169532 hasConcept C52740198 @default.
- W4313169532 hasConcept C81692654 @default.
- W4313169532 hasConceptScore W4313169532C105795698 @default.
- W4313169532 hasConceptScore W4313169532C106131492 @default.
- W4313169532 hasConceptScore W4313169532C118671147 @default.
- W4313169532 hasConceptScore W4313169532C119857082 @default.
- W4313169532 hasConceptScore W4313169532C126255220 @default.
- W4313169532 hasConceptScore W4313169532C140779682 @default.
- W4313169532 hasConceptScore W4313169532C149782125 @default.
- W4313169532 hasConceptScore W4313169532C154945302 @default.
- W4313169532 hasConceptScore W4313169532C19499675 @default.
- W4313169532 hasConceptScore W4313169532C31972630 @default.
- W4313169532 hasConceptScore W4313169532C32834561 @default.
- W4313169532 hasConceptScore W4313169532C33923547 @default.
- W4313169532 hasConceptScore W4313169532C41008148 @default.