Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313171272> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4313171272 abstract "DNA methylation is a crucial element of epigenetics and plays an important role in the evolution of life. As a result, detecting the status of DNA methylation becomes critically valuable. But since traditional biological experimental methods were unable to meet the actual needs, researchers began to employ machine learning and deep learning to aid biological experiments in determining methylation status. However, there are issues with feature acquisition, such as inconvenient extraction and high dimension. To address this issue, this paper proposes a feature extraction method based on convolution neural network (CNN) and recurrent neural network (RNN). Initially, the DNA methylation data used in this paper were obtained from the gene expression omnibus (GEO) database, and the data were preprocessed before use. Furthermore, we built a CNN and an RNN to extract features from DNA methylation data and then used feature splicing to find the best features. Eventually, we train the prediction model with a deep residual network and assess the model’s prediction performance with a confusion matrix. Compared with existing methods, we proposed method has better prediction performance." @default.
- W4313171272 created "2023-01-06" @default.
- W4313171272 creator A5027512918 @default.
- W4313171272 creator A5037471860 @default.
- W4313171272 creator A5049573882 @default.
- W4313171272 creator A5055760894 @default.
- W4313171272 creator A5056933557 @default.
- W4313171272 creator A5075532536 @default.
- W4313171272 creator A5083723714 @default.
- W4313171272 date "2022-04-01" @default.
- W4313171272 modified "2023-09-24" @default.
- W4313171272 title "Prediction of DNA methylation site status based on fusion deep learning algorithm" @default.
- W4313171272 cites W2014669590 @default.
- W4313171272 cites W2194775991 @default.
- W4313171272 cites W2939074261 @default.
- W4313171272 cites W2969332757 @default.
- W4313171272 cites W3081644394 @default.
- W4313171272 cites W3110077713 @default.
- W4313171272 cites W4206917473 @default.
- W4313171272 doi "https://doi.org/10.1109/aemcse55572.2022.00044" @default.
- W4313171272 hasPublicationYear "2022" @default.
- W4313171272 type Work @default.
- W4313171272 citedByCount "0" @default.
- W4313171272 crossrefType "proceedings-article" @default.
- W4313171272 hasAuthorship W4313171272A5027512918 @default.
- W4313171272 hasAuthorship W4313171272A5037471860 @default.
- W4313171272 hasAuthorship W4313171272A5049573882 @default.
- W4313171272 hasAuthorship W4313171272A5055760894 @default.
- W4313171272 hasAuthorship W4313171272A5056933557 @default.
- W4313171272 hasAuthorship W4313171272A5075532536 @default.
- W4313171272 hasAuthorship W4313171272A5083723714 @default.
- W4313171272 hasConcept C104317684 @default.
- W4313171272 hasConcept C108583219 @default.
- W4313171272 hasConcept C119857082 @default.
- W4313171272 hasConcept C138602881 @default.
- W4313171272 hasConcept C138885662 @default.
- W4313171272 hasConcept C147168706 @default.
- W4313171272 hasConcept C150194340 @default.
- W4313171272 hasConcept C154945302 @default.
- W4313171272 hasConcept C190727270 @default.
- W4313171272 hasConcept C2776401178 @default.
- W4313171272 hasConcept C41008148 @default.
- W4313171272 hasConcept C41091548 @default.
- W4313171272 hasConcept C41895202 @default.
- W4313171272 hasConcept C50644808 @default.
- W4313171272 hasConcept C52622490 @default.
- W4313171272 hasConcept C55493867 @default.
- W4313171272 hasConcept C81363708 @default.
- W4313171272 hasConcept C86803240 @default.
- W4313171272 hasConceptScore W4313171272C104317684 @default.
- W4313171272 hasConceptScore W4313171272C108583219 @default.
- W4313171272 hasConceptScore W4313171272C119857082 @default.
- W4313171272 hasConceptScore W4313171272C138602881 @default.
- W4313171272 hasConceptScore W4313171272C138885662 @default.
- W4313171272 hasConceptScore W4313171272C147168706 @default.
- W4313171272 hasConceptScore W4313171272C150194340 @default.
- W4313171272 hasConceptScore W4313171272C154945302 @default.
- W4313171272 hasConceptScore W4313171272C190727270 @default.
- W4313171272 hasConceptScore W4313171272C2776401178 @default.
- W4313171272 hasConceptScore W4313171272C41008148 @default.
- W4313171272 hasConceptScore W4313171272C41091548 @default.
- W4313171272 hasConceptScore W4313171272C41895202 @default.
- W4313171272 hasConceptScore W4313171272C50644808 @default.
- W4313171272 hasConceptScore W4313171272C52622490 @default.
- W4313171272 hasConceptScore W4313171272C55493867 @default.
- W4313171272 hasConceptScore W4313171272C81363708 @default.
- W4313171272 hasConceptScore W4313171272C86803240 @default.
- W4313171272 hasFunder F4320325569 @default.
- W4313171272 hasLocation W43131712721 @default.
- W4313171272 hasOpenAccess W4313171272 @default.
- W4313171272 hasPrimaryLocation W43131712721 @default.
- W4313171272 hasRelatedWork W2279398222 @default.
- W4313171272 hasRelatedWork W2337926734 @default.
- W4313171272 hasRelatedWork W2913302899 @default.
- W4313171272 hasRelatedWork W3011074480 @default.
- W4313171272 hasRelatedWork W3021430260 @default.
- W4313171272 hasRelatedWork W3156786002 @default.
- W4313171272 hasRelatedWork W4231994957 @default.
- W4313171272 hasRelatedWork W4281386417 @default.
- W4313171272 hasRelatedWork W4299822940 @default.
- W4313171272 hasRelatedWork W4311257506 @default.
- W4313171272 isParatext "false" @default.
- W4313171272 isRetracted "false" @default.
- W4313171272 workType "article" @default.