Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313171447> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4313171447 abstract "The data representation in a machine-learning model strongly influences its performance. This becomes even more important for quantum machine learning models implemented on noisy intermediate scale quantum (NISQ) devices. Encoding high dimensional data into a quantum circuit for a NISQ device without any loss of information is not trivial and brings a lot of challenges. While simple encoding schemes (like single qubit rotational gates to encode high dimensional data) often lead to information loss within the circuit, complex encoding schemes with entanglement and data re-uploading lead to an increase in the encoding gate count. This is not well-suited for NISQ devices. This work proposes ‘incremental data-uploading’, a novel encoding pattern for high dimensional data that tackles these challenges. We spread the encoding gates for the feature vector of a given data point throughout the quantum circuit with parameterized gates in between them. This encoding pattern results in a better representation of data in the quantum circuit with a minimal pre-processing requirement. We show the efficiency of our encoding pattern on a classification task using the MNIST and Fashion-MNIST datasets, and compare different encoding methods via classification accuracy and the effective dimension of the model." @default.
- W4313171447 created "2023-01-06" @default.
- W4313171447 creator A5005165731 @default.
- W4313171447 creator A5016692100 @default.
- W4313171447 creator A5023277657 @default.
- W4313171447 creator A5032778358 @default.
- W4313171447 creator A5052496872 @default.
- W4313171447 creator A5063551766 @default.
- W4313171447 date "2022-09-01" @default.
- W4313171447 modified "2023-10-16" @default.
- W4313171447 title "Incremental Data-Uploading for Full-Quantum Classification" @default.
- W4313171447 cites W2068782468 @default.
- W4313171447 cites W2794444783 @default.
- W4313171447 cites W2804076222 @default.
- W4313171447 cites W3009313620 @default.
- W4313171447 cites W3075559820 @default.
- W4313171447 cites W3098599423 @default.
- W4313171447 cites W3101479050 @default.
- W4313171447 cites W3110729149 @default.
- W4313171447 cites W3124804668 @default.
- W4313171447 cites W3128080705 @default.
- W4313171447 cites W3132743969 @default.
- W4313171447 cites W3190701103 @default.
- W4313171447 cites W3211028885 @default.
- W4313171447 cites W3211365151 @default.
- W4313171447 cites W3217553062 @default.
- W4313171447 cites W4293051376 @default.
- W4313171447 cites W4312261998 @default.
- W4313171447 doi "https://doi.org/10.1109/qce53715.2022.00021" @default.
- W4313171447 hasPublicationYear "2022" @default.
- W4313171447 type Work @default.
- W4313171447 citedByCount "1" @default.
- W4313171447 countsByYear W43131714472022 @default.
- W4313171447 crossrefType "proceedings-article" @default.
- W4313171447 hasAuthorship W4313171447A5005165731 @default.
- W4313171447 hasAuthorship W4313171447A5016692100 @default.
- W4313171447 hasAuthorship W4313171447A5023277657 @default.
- W4313171447 hasAuthorship W4313171447A5032778358 @default.
- W4313171447 hasAuthorship W4313171447A5052496872 @default.
- W4313171447 hasAuthorship W4313171447A5063551766 @default.
- W4313171447 hasBestOaLocation W43131714472 @default.
- W4313171447 hasConcept C108583219 @default.
- W4313171447 hasConcept C121332964 @default.
- W4313171447 hasConcept C125411270 @default.
- W4313171447 hasConcept C154945302 @default.
- W4313171447 hasConcept C190502265 @default.
- W4313171447 hasConcept C41008148 @default.
- W4313171447 hasConcept C58053490 @default.
- W4313171447 hasConcept C62520636 @default.
- W4313171447 hasConcept C80444323 @default.
- W4313171447 hasConcept C84114770 @default.
- W4313171447 hasConceptScore W4313171447C108583219 @default.
- W4313171447 hasConceptScore W4313171447C121332964 @default.
- W4313171447 hasConceptScore W4313171447C125411270 @default.
- W4313171447 hasConceptScore W4313171447C154945302 @default.
- W4313171447 hasConceptScore W4313171447C190502265 @default.
- W4313171447 hasConceptScore W4313171447C41008148 @default.
- W4313171447 hasConceptScore W4313171447C58053490 @default.
- W4313171447 hasConceptScore W4313171447C62520636 @default.
- W4313171447 hasConceptScore W4313171447C80444323 @default.
- W4313171447 hasConceptScore W4313171447C84114770 @default.
- W4313171447 hasFunder F4320322835 @default.
- W4313171447 hasLocation W43131714471 @default.
- W4313171447 hasLocation W43131714472 @default.
- W4313171447 hasOpenAccess W4313171447 @default.
- W4313171447 hasPrimaryLocation W43131714471 @default.
- W4313171447 hasRelatedWork W2167735388 @default.
- W4313171447 hasRelatedWork W2248239756 @default.
- W4313171447 hasRelatedWork W2276478028 @default.
- W4313171447 hasRelatedWork W2767072113 @default.
- W4313171447 hasRelatedWork W2904174853 @default.
- W4313171447 hasRelatedWork W2947175736 @default.
- W4313171447 hasRelatedWork W2963510064 @default.
- W4313171447 hasRelatedWork W3156786002 @default.
- W4313171447 hasRelatedWork W4287510235 @default.
- W4313171447 hasRelatedWork W4309224979 @default.
- W4313171447 isParatext "false" @default.
- W4313171447 isRetracted "false" @default.
- W4313171447 workType "article" @default.