Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313172046> ?p ?o ?g. }
- W4313172046 endingPage "16" @default.
- W4313172046 startingPage "1" @default.
- W4313172046 abstract "In Spatial crowdsourcing, mobile users perform spatio-temporal tasks that involve travel to specified locations. Spatial crowdsourcing (SC) is enabled by SC platforms that support mobile worker recruitment and retention, as well as task assignment, which is essential to maximize profits that are accrued from serving task requests. Specifically, how to best achieve task assignment in a cost-effective manner while contending with spatio-temporal constraints is a key challenge in SC. To address this challenge, we formalize and study a novel Profit-driven Task Assignment problem. We first establish a task reward pricing model that takes into account the temporal constraints (i.e., expected completion time and deadline) of tasks. Then we adopt an optimal algorithm based on tree decomposition to achieve an optimal task assignment and propose greedy algorithms based on Random Tuning Optimization to improve the computational efficiency. To balance effectiveness and efficiency, we also provide a heuristic task assignment algorithm based on Ant Colony Optimization that assigns tasks by simulating behavior of ant colonies foraging for food. Finally, we conduct extensive experiments using real and synthetic data, offering detailed insight into effectiveness and efficiency of the proposed methods." @default.
- W4313172046 created "2023-01-06" @default.
- W4313172046 creator A5001910317 @default.
- W4313172046 creator A5002283678 @default.
- W4313172046 creator A5011384237 @default.
- W4313172046 creator A5029380368 @default.
- W4313172046 creator A5052463323 @default.
- W4313172046 creator A5053083043 @default.
- W4313172046 creator A5060365518 @default.
- W4313172046 creator A5061064237 @default.
- W4313172046 creator A5072309548 @default.
- W4313172046 date "2022-01-01" @default.
- W4313172046 modified "2023-10-01" @default.
- W4313172046 title "Profit Optimization in Spatial Crowdsourcing: Effectiveness and Efficiency" @default.
- W4313172046 cites W118259468 @default.
- W4313172046 cites W1510379852 @default.
- W4313172046 cites W1970756365 @default.
- W4313172046 cites W2005406065 @default.
- W4313172046 cites W2029217521 @default.
- W4313172046 cites W2036698797 @default.
- W4313172046 cites W2059618043 @default.
- W4313172046 cites W2074195549 @default.
- W4313172046 cites W2077524676 @default.
- W4313172046 cites W2107756083 @default.
- W4313172046 cites W2107941094 @default.
- W4313172046 cites W2113786286 @default.
- W4313172046 cites W2124810512 @default.
- W4313172046 cites W2218919311 @default.
- W4313172046 cites W2259955458 @default.
- W4313172046 cites W2270455647 @default.
- W4313172046 cites W2272252781 @default.
- W4313172046 cites W2279039799 @default.
- W4313172046 cites W2295817712 @default.
- W4313172046 cites W2430704425 @default.
- W4313172046 cites W2467923433 @default.
- W4313172046 cites W2525830997 @default.
- W4313172046 cites W2614598347 @default.
- W4313172046 cites W2753741836 @default.
- W4313172046 cites W2767312068 @default.
- W4313172046 cites W2798728990 @default.
- W4313172046 cites W2889125237 @default.
- W4313172046 cites W2904792423 @default.
- W4313172046 cites W2915062141 @default.
- W4313172046 cites W2922336629 @default.
- W4313172046 cites W2950136892 @default.
- W4313172046 cites W2953296510 @default.
- W4313172046 cites W2966670081 @default.
- W4313172046 cites W2970142969 @default.
- W4313172046 cites W2980028286 @default.
- W4313172046 cites W2986725445 @default.
- W4313172046 cites W3032431088 @default.
- W4313172046 cites W3084954566 @default.
- W4313172046 cites W3087897365 @default.
- W4313172046 cites W3104340135 @default.
- W4313172046 cites W3131643459 @default.
- W4313172046 cites W3174384913 @default.
- W4313172046 cites W3174648681 @default.
- W4313172046 cites W3210313333 @default.
- W4313172046 cites W3211318066 @default.
- W4313172046 cites W4207049741 @default.
- W4313172046 doi "https://doi.org/10.1109/tkde.2022.3220360" @default.
- W4313172046 hasPublicationYear "2022" @default.
- W4313172046 type Work @default.
- W4313172046 citedByCount "2" @default.
- W4313172046 countsByYear W43131720462023 @default.
- W4313172046 crossrefType "journal-article" @default.
- W4313172046 hasAuthorship W4313172046A5001910317 @default.
- W4313172046 hasAuthorship W4313172046A5002283678 @default.
- W4313172046 hasAuthorship W4313172046A5011384237 @default.
- W4313172046 hasAuthorship W4313172046A5029380368 @default.
- W4313172046 hasAuthorship W4313172046A5052463323 @default.
- W4313172046 hasAuthorship W4313172046A5053083043 @default.
- W4313172046 hasAuthorship W4313172046A5060365518 @default.
- W4313172046 hasAuthorship W4313172046A5061064237 @default.
- W4313172046 hasAuthorship W4313172046A5072309548 @default.
- W4313172046 hasConcept C11413529 @default.
- W4313172046 hasConcept C136764020 @default.
- W4313172046 hasConcept C137836250 @default.
- W4313172046 hasConcept C154945302 @default.
- W4313172046 hasConcept C162324750 @default.
- W4313172046 hasConcept C173801870 @default.
- W4313172046 hasConcept C175444787 @default.
- W4313172046 hasConcept C181622380 @default.
- W4313172046 hasConcept C187736073 @default.
- W4313172046 hasConcept C26517878 @default.
- W4313172046 hasConcept C2780451532 @default.
- W4313172046 hasConcept C38652104 @default.
- W4313172046 hasConcept C40128228 @default.
- W4313172046 hasConcept C41008148 @default.
- W4313172046 hasConcept C51823790 @default.
- W4313172046 hasConcept C62230096 @default.
- W4313172046 hasConceptScore W4313172046C11413529 @default.
- W4313172046 hasConceptScore W4313172046C136764020 @default.
- W4313172046 hasConceptScore W4313172046C137836250 @default.
- W4313172046 hasConceptScore W4313172046C154945302 @default.
- W4313172046 hasConceptScore W4313172046C162324750 @default.
- W4313172046 hasConceptScore W4313172046C173801870 @default.
- W4313172046 hasConceptScore W4313172046C175444787 @default.