Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313173861> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4313173861 endingPage "641" @default.
- W4313173861 startingPage "634" @default.
- W4313173861 abstract "The monitoring methods used in traditional lower extremity rehabilitation require complex preparation of the user, which is not only tedious but also prone to secondary injuries. To address this problem, this paper establishes a deep learning algorithm for image recognition to classify and recognize the state features of the human body in the process of sit-stand transfer in the motion phase, firstly, the state images are preprocessed to improve the computing efficiency; then the data are broadened to improve the accuracy of recognition; then the image recognition is used to extract features and train the classification for each motion phase state image. Finally, the results obtained by using the optical motion capture system as a control test verified that the image recognition accuracy can reach 99.5%, meeting the purpose of monitoring the human condition during training." @default.
- W4313173861 created "2023-01-06" @default.
- W4313173861 creator A5032771350 @default.
- W4313173861 creator A5045875084 @default.
- W4313173861 creator A5047171623 @default.
- W4313173861 creator A5052964586 @default.
- W4313173861 creator A5054844187 @default.
- W4313173861 creator A5089966579 @default.
- W4313173861 date "2022-04-01" @default.
- W4313173861 modified "2023-09-27" @default.
- W4313173861 title "Deep Learning-Based Recognition of Human Training States During Sit-to-Stand Transfer" @default.
- W4313173861 cites W1983364832 @default.
- W4313173861 cites W2023186138 @default.
- W4313173861 cites W2064313486 @default.
- W4313173861 cites W2082314228 @default.
- W4313173861 cites W2112021557 @default.
- W4313173861 cites W2135676962 @default.
- W4313173861 cites W2801273421 @default.
- W4313173861 doi "https://doi.org/10.1166/jno.2022.3237" @default.
- W4313173861 hasPublicationYear "2022" @default.
- W4313173861 type Work @default.
- W4313173861 citedByCount "0" @default.
- W4313173861 crossrefType "journal-article" @default.
- W4313173861 hasAuthorship W4313173861A5032771350 @default.
- W4313173861 hasAuthorship W4313173861A5045875084 @default.
- W4313173861 hasAuthorship W4313173861A5047171623 @default.
- W4313173861 hasAuthorship W4313173861A5052964586 @default.
- W4313173861 hasAuthorship W4313173861A5054844187 @default.
- W4313173861 hasAuthorship W4313173861A5089966579 @default.
- W4313173861 hasConcept C104114177 @default.
- W4313173861 hasConcept C108583219 @default.
- W4313173861 hasConcept C111919701 @default.
- W4313173861 hasConcept C11413529 @default.
- W4313173861 hasConcept C115961682 @default.
- W4313173861 hasConcept C119857082 @default.
- W4313173861 hasConcept C121332964 @default.
- W4313173861 hasConcept C121687571 @default.
- W4313173861 hasConcept C150899416 @default.
- W4313173861 hasConcept C153180895 @default.
- W4313173861 hasConcept C153294291 @default.
- W4313173861 hasConcept C154945302 @default.
- W4313173861 hasConcept C2777211547 @default.
- W4313173861 hasConcept C31972630 @default.
- W4313173861 hasConcept C41008148 @default.
- W4313173861 hasConcept C48103436 @default.
- W4313173861 hasConcept C51632099 @default.
- W4313173861 hasConcept C98045186 @default.
- W4313173861 hasConceptScore W4313173861C104114177 @default.
- W4313173861 hasConceptScore W4313173861C108583219 @default.
- W4313173861 hasConceptScore W4313173861C111919701 @default.
- W4313173861 hasConceptScore W4313173861C11413529 @default.
- W4313173861 hasConceptScore W4313173861C115961682 @default.
- W4313173861 hasConceptScore W4313173861C119857082 @default.
- W4313173861 hasConceptScore W4313173861C121332964 @default.
- W4313173861 hasConceptScore W4313173861C121687571 @default.
- W4313173861 hasConceptScore W4313173861C150899416 @default.
- W4313173861 hasConceptScore W4313173861C153180895 @default.
- W4313173861 hasConceptScore W4313173861C153294291 @default.
- W4313173861 hasConceptScore W4313173861C154945302 @default.
- W4313173861 hasConceptScore W4313173861C2777211547 @default.
- W4313173861 hasConceptScore W4313173861C31972630 @default.
- W4313173861 hasConceptScore W4313173861C41008148 @default.
- W4313173861 hasConceptScore W4313173861C48103436 @default.
- W4313173861 hasConceptScore W4313173861C51632099 @default.
- W4313173861 hasConceptScore W4313173861C98045186 @default.
- W4313173861 hasIssue "4" @default.
- W4313173861 hasLocation W43131738611 @default.
- W4313173861 hasOpenAccess W4313173861 @default.
- W4313173861 hasPrimaryLocation W43131738611 @default.
- W4313173861 hasRelatedWork W2889705046 @default.
- W4313173861 hasRelatedWork W2946016983 @default.
- W4313173861 hasRelatedWork W2949280030 @default.
- W4313173861 hasRelatedWork W2960456850 @default.
- W4313173861 hasRelatedWork W3031818154 @default.
- W4313173861 hasRelatedWork W4213299466 @default.
- W4313173861 hasRelatedWork W4312200629 @default.
- W4313173861 hasRelatedWork W4317565044 @default.
- W4313173861 hasRelatedWork W4318834068 @default.
- W4313173861 hasRelatedWork W4318957922 @default.
- W4313173861 hasVolume "17" @default.
- W4313173861 isParatext "false" @default.
- W4313173861 isRetracted "false" @default.
- W4313173861 workType "article" @default.