Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313174708> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4313174708 abstract "Currently, in light of the health catastrophe due to the COVID-19 which has been unfolding all over the world. Wearing a defensive mask has ended up a substitute normal. Face recognition technology is most commonly implemented for surveillance and other applications. Traditional machine learning classifiers as well as deep transfer learning classifiers have been used to accomplish the face mask detection mechanism. In this paper, two hybrid deep learning models MobileNetV2-SVM and MobilNetV2-KNN has been proposed for the task of face mask detection. The models involve two processes: feature extraction and classification. For initialization, the MobileNetV2 pre-trained weights from ImageNet were employed, and during training, data augmentation and resampling were applied. By integrating the model with an SVM classifier and a KNN classifier, the model is further refined, creating hybrid models that are effective in terms of processing. The Kaggle dataset of 45000 images (22582 images are masked and 23423 images that are unmasked) of the proposed model/system is trained using MobilenetV2 and classified using SVM and K-NN algorithm in different models. Various machine learning frameworks were used like pandas, TensorFlow, Keras and NumPy. The accuracy achieved by the SVM model is 98.17% and 95.22% accuracy are achieved by using the K-NN classifier." @default.
- W4313174708 created "2023-01-06" @default.
- W4313174708 creator A5022991626 @default.
- W4313174708 creator A5029387788 @default.
- W4313174708 creator A5045879377 @default.
- W4313174708 creator A5062926793 @default.
- W4313174708 creator A5090147140 @default.
- W4313174708 date "2022-10-13" @default.
- W4313174708 modified "2023-10-06" @default.
- W4313174708 title "Face Mask Detection using an Automated Hybrid Deep Learning Method in the COVID Scenario" @default.
- W4313174708 cites W2921765345 @default.
- W4313174708 cites W3045576536 @default.
- W4313174708 cites W3080525841 @default.
- W4313174708 cites W3094201685 @default.
- W4313174708 cites W3117551253 @default.
- W4313174708 cites W3121819577 @default.
- W4313174708 cites W3126909071 @default.
- W4313174708 cites W3135227314 @default.
- W4313174708 cites W3146066083 @default.
- W4313174708 cites W3157935211 @default.
- W4313174708 cites W3213427296 @default.
- W4313174708 doi "https://doi.org/10.1109/icrito56286.2022.9964589" @default.
- W4313174708 hasPublicationYear "2022" @default.
- W4313174708 type Work @default.
- W4313174708 citedByCount "1" @default.
- W4313174708 countsByYear W43131747082023 @default.
- W4313174708 crossrefType "proceedings-article" @default.
- W4313174708 hasAuthorship W4313174708A5022991626 @default.
- W4313174708 hasAuthorship W4313174708A5029387788 @default.
- W4313174708 hasAuthorship W4313174708A5045879377 @default.
- W4313174708 hasAuthorship W4313174708A5062926793 @default.
- W4313174708 hasAuthorship W4313174708A5090147140 @default.
- W4313174708 hasConcept C108583219 @default.
- W4313174708 hasConcept C114466953 @default.
- W4313174708 hasConcept C119857082 @default.
- W4313174708 hasConcept C12267149 @default.
- W4313174708 hasConcept C150899416 @default.
- W4313174708 hasConcept C153180895 @default.
- W4313174708 hasConcept C154945302 @default.
- W4313174708 hasConcept C199360897 @default.
- W4313174708 hasConcept C31510193 @default.
- W4313174708 hasConcept C41008148 @default.
- W4313174708 hasConcept C4641261 @default.
- W4313174708 hasConcept C50644808 @default.
- W4313174708 hasConcept C52622490 @default.
- W4313174708 hasConcept C95623464 @default.
- W4313174708 hasConceptScore W4313174708C108583219 @default.
- W4313174708 hasConceptScore W4313174708C114466953 @default.
- W4313174708 hasConceptScore W4313174708C119857082 @default.
- W4313174708 hasConceptScore W4313174708C12267149 @default.
- W4313174708 hasConceptScore W4313174708C150899416 @default.
- W4313174708 hasConceptScore W4313174708C153180895 @default.
- W4313174708 hasConceptScore W4313174708C154945302 @default.
- W4313174708 hasConceptScore W4313174708C199360897 @default.
- W4313174708 hasConceptScore W4313174708C31510193 @default.
- W4313174708 hasConceptScore W4313174708C41008148 @default.
- W4313174708 hasConceptScore W4313174708C4641261 @default.
- W4313174708 hasConceptScore W4313174708C50644808 @default.
- W4313174708 hasConceptScore W4313174708C52622490 @default.
- W4313174708 hasConceptScore W4313174708C95623464 @default.
- W4313174708 hasLocation W43131747081 @default.
- W4313174708 hasOpenAccess W4313174708 @default.
- W4313174708 hasPrimaryLocation W43131747081 @default.
- W4313174708 hasRelatedWork W2126100045 @default.
- W4313174708 hasRelatedWork W2292451947 @default.
- W4313174708 hasRelatedWork W2562832125 @default.
- W4313174708 hasRelatedWork W2733060750 @default.
- W4313174708 hasRelatedWork W2848133549 @default.
- W4313174708 hasRelatedWork W2914194627 @default.
- W4313174708 hasRelatedWork W2946016983 @default.
- W4313174708 hasRelatedWork W2995914718 @default.
- W4313174708 hasRelatedWork W4317987726 @default.
- W4313174708 hasRelatedWork W3158004940 @default.
- W4313174708 isParatext "false" @default.
- W4313174708 isRetracted "false" @default.
- W4313174708 workType "article" @default.