Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313176056> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4313176056 endingPage "27" @default.
- W4313176056 startingPage "15" @default.
- W4313176056 abstract "Coupon marketing is one of the oldest and most effective business marketing methods, in which special offers on products or services entice clients. This paper proposes a framework that acts as a coupon recommender system for in-vehicle users collaborating Machine Learning techniques to suggest the most suitable coupon for the user based on their attributes. ANN, CNN, LSTM, Random Forest, XGBoost, and Stacking Machine Learning Algorithms are applied to train and test the dataset to determine the most efficient and accurate algorithm that can predict the desirable coupon for the vehicle user. Accuracy, Precision, Recall, and F1-scores were calculated and compared of these algorithm models to obtain the most efficient model for the framework. Lastly, the framework determines the possibilities of accepting the available coupons based on the user features using the best-performing algorithm and recommends the coupon, thus providing a highly beneficial and effective system for the in-vehicle users and business owners." @default.
- W4313176056 created "2023-01-06" @default.
- W4313176056 creator A5000821061 @default.
- W4313176056 creator A5021768226 @default.
- W4313176056 creator A5059562519 @default.
- W4313176056 creator A5076452704 @default.
- W4313176056 date "2022-01-01" @default.
- W4313176056 modified "2023-09-27" @default.
- W4313176056 title "A Methodology for Recommending In-Vehicle Coupons Incorporating Machine Learning Algorithms for Efficient Financial Schemes" @default.
- W4313176056 cites W1495305355 @default.
- W4313176056 cites W1969778690 @default.
- W4313176056 cites W2133366098 @default.
- W4313176056 cites W2236196440 @default.
- W4313176056 cites W2552700340 @default.
- W4313176056 cites W2937806338 @default.
- W4313176056 cites W3003753994 @default.
- W4313176056 cites W3005455537 @default.
- W4313176056 cites W3007585507 @default.
- W4313176056 cites W3013498854 @default.
- W4313176056 cites W3048749423 @default.
- W4313176056 cites W3208808136 @default.
- W4313176056 doi "https://doi.org/10.1007/978-981-19-2445-3_2" @default.
- W4313176056 hasPublicationYear "2022" @default.
- W4313176056 type Work @default.
- W4313176056 citedByCount "0" @default.
- W4313176056 crossrefType "book-chapter" @default.
- W4313176056 hasAuthorship W4313176056A5000821061 @default.
- W4313176056 hasAuthorship W4313176056A5021768226 @default.
- W4313176056 hasAuthorship W4313176056A5059562519 @default.
- W4313176056 hasAuthorship W4313176056A5076452704 @default.
- W4313176056 hasConcept C10138342 @default.
- W4313176056 hasConcept C11413529 @default.
- W4313176056 hasConcept C119857082 @default.
- W4313176056 hasConcept C154945302 @default.
- W4313176056 hasConcept C162324750 @default.
- W4313176056 hasConcept C169258074 @default.
- W4313176056 hasConcept C2779307704 @default.
- W4313176056 hasConcept C41008148 @default.
- W4313176056 hasConcept C557471498 @default.
- W4313176056 hasConceptScore W4313176056C10138342 @default.
- W4313176056 hasConceptScore W4313176056C11413529 @default.
- W4313176056 hasConceptScore W4313176056C119857082 @default.
- W4313176056 hasConceptScore W4313176056C154945302 @default.
- W4313176056 hasConceptScore W4313176056C162324750 @default.
- W4313176056 hasConceptScore W4313176056C169258074 @default.
- W4313176056 hasConceptScore W4313176056C2779307704 @default.
- W4313176056 hasConceptScore W4313176056C41008148 @default.
- W4313176056 hasConceptScore W4313176056C557471498 @default.
- W4313176056 hasLocation W43131760561 @default.
- W4313176056 hasOpenAccess W4313176056 @default.
- W4313176056 hasPrimaryLocation W43131760561 @default.
- W4313176056 hasRelatedWork W2911455822 @default.
- W4313176056 hasRelatedWork W3116896278 @default.
- W4313176056 hasRelatedWork W3174196512 @default.
- W4313176056 hasRelatedWork W4225360065 @default.
- W4313176056 hasRelatedWork W4282839226 @default.
- W4313176056 hasRelatedWork W4283016678 @default.
- W4313176056 hasRelatedWork W4318350883 @default.
- W4313176056 hasRelatedWork W4320483443 @default.
- W4313176056 hasRelatedWork W4322727400 @default.
- W4313176056 hasRelatedWork W4323021782 @default.
- W4313176056 isParatext "false" @default.
- W4313176056 isRetracted "false" @default.
- W4313176056 workType "book-chapter" @default.