Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313176985> ?p ?o ?g. }
- W4313176985 endingPage "19" @default.
- W4313176985 startingPage "1" @default.
- W4313176985 abstract "Few-Shot Learning (FSL) alleviates the data shortage challenge via embedding discriminative target-aware features among plenty seen (base) and few unseen (novel) labeled samples. Most feature embedding modules in recent FSL methods are specially designed for corresponding learning tasks (e.g., classification, segmentation, and object detection), which limits the utility of embedding features. To this end, we propose a light and universal module named transformer-based Semantic Filter (tSF), which can be applied for different FSL tasks. The proposed tSF redesigns the inputs of a transformer-based structure by a semantic filter, which not only embeds the knowledge from whole base set to novel set but also filters semantic features for target category. Furthermore, the parameters of tSF is equal to half of a standard transformer block (less than 1M). In the experiments, our tSF is able to boost the performances in different classic few-shot learning tasks (about $$2%$$ improvement), especially outperforms the state-of-the-arts on multiple benchmark datasets in few-shot classification task." @default.
- W4313176985 created "2023-01-06" @default.
- W4313176985 creator A5000290451 @default.
- W4313176985 creator A5019706230 @default.
- W4313176985 creator A5023834700 @default.
- W4313176985 creator A5025846619 @default.
- W4313176985 creator A5027835055 @default.
- W4313176985 creator A5029589252 @default.
- W4313176985 creator A5032912558 @default.
- W4313176985 creator A5073058087 @default.
- W4313176985 creator A5082986570 @default.
- W4313176985 date "2022-01-01" @default.
- W4313176985 modified "2023-10-18" @default.
- W4313176985 title "tSF: Transformer-Based Semantic Filter for Few-Shot Learning" @default.
- W4313176985 cites W1861492603 @default.
- W4313176985 cites W2031489346 @default.
- W4313176985 cites W2962895018 @default.
- W4313176985 cites W2963078159 @default.
- W4313176985 cites W2963599420 @default.
- W4313176985 cites W2964105864 @default.
- W4313176985 cites W2981787211 @default.
- W4313176985 cites W2982806777 @default.
- W4313176985 cites W2983156430 @default.
- W4313176985 cites W2983850069 @default.
- W4313176985 cites W2990230185 @default.
- W4313176985 cites W2994528761 @default.
- W4313176985 cites W2994633389 @default.
- W4313176985 cites W2996583130 @default.
- W4313176985 cites W2997322677 @default.
- W4313176985 cites W2998508940 @default.
- W4313176985 cites W3009213340 @default.
- W4313176985 cites W3012255272 @default.
- W4313176985 cites W3033502887 @default.
- W4313176985 cites W3034275286 @default.
- W4313176985 cites W3034312118 @default.
- W4313176985 cites W3034512672 @default.
- W4313176985 cites W3034974675 @default.
- W4313176985 cites W3034985049 @default.
- W4313176985 cites W3094724482 @default.
- W4313176985 cites W3096609285 @default.
- W4313176985 cites W3097651496 @default.
- W4313176985 cites W3106728613 @default.
- W4313176985 cites W3106906018 @default.
- W4313176985 cites W3108187451 @default.
- W4313176985 cites W3108189450 @default.
- W4313176985 cites W3108975329 @default.
- W4313176985 cites W3109083691 @default.
- W4313176985 cites W3110528336 @default.
- W4313176985 cites W3131500599 @default.
- W4313176985 cites W3166058839 @default.
- W4313176985 cites W3166285241 @default.
- W4313176985 cites W3169708801 @default.
- W4313176985 cites W3170841864 @default.
- W4313176985 cites W3173908982 @default.
- W4313176985 cites W3174017448 @default.
- W4313176985 cites W3174159092 @default.
- W4313176985 cites W3181932393 @default.
- W4313176985 cites W3194746126 @default.
- W4313176985 cites W3204077273 @default.
- W4313176985 cites W4214573368 @default.
- W4313176985 cites W4214724741 @default.
- W4313176985 doi "https://doi.org/10.1007/978-3-031-20044-1_1" @default.
- W4313176985 hasPublicationYear "2022" @default.
- W4313176985 type Work @default.
- W4313176985 citedByCount "2" @default.
- W4313176985 countsByYear W43131769852023 @default.
- W4313176985 crossrefType "book-chapter" @default.
- W4313176985 hasAuthorship W4313176985A5000290451 @default.
- W4313176985 hasAuthorship W4313176985A5019706230 @default.
- W4313176985 hasAuthorship W4313176985A5023834700 @default.
- W4313176985 hasAuthorship W4313176985A5025846619 @default.
- W4313176985 hasAuthorship W4313176985A5027835055 @default.
- W4313176985 hasAuthorship W4313176985A5029589252 @default.
- W4313176985 hasAuthorship W4313176985A5032912558 @default.
- W4313176985 hasAuthorship W4313176985A5073058087 @default.
- W4313176985 hasAuthorship W4313176985A5082986570 @default.
- W4313176985 hasBestOaLocation W43131769852 @default.
- W4313176985 hasConcept C106131492 @default.
- W4313176985 hasConcept C119857082 @default.
- W4313176985 hasConcept C121332964 @default.
- W4313176985 hasConcept C153180895 @default.
- W4313176985 hasConcept C154945302 @default.
- W4313176985 hasConcept C165801399 @default.
- W4313176985 hasConcept C31972630 @default.
- W4313176985 hasConcept C41008148 @default.
- W4313176985 hasConcept C41608201 @default.
- W4313176985 hasConcept C62520636 @default.
- W4313176985 hasConcept C66322947 @default.
- W4313176985 hasConcept C97931131 @default.
- W4313176985 hasConceptScore W4313176985C106131492 @default.
- W4313176985 hasConceptScore W4313176985C119857082 @default.
- W4313176985 hasConceptScore W4313176985C121332964 @default.
- W4313176985 hasConceptScore W4313176985C153180895 @default.
- W4313176985 hasConceptScore W4313176985C154945302 @default.
- W4313176985 hasConceptScore W4313176985C165801399 @default.
- W4313176985 hasConceptScore W4313176985C31972630 @default.
- W4313176985 hasConceptScore W4313176985C41008148 @default.
- W4313176985 hasConceptScore W4313176985C41608201 @default.