Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313177526> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W4313177526 endingPage "1357" @default.
- W4313177526 startingPage "1347" @default.
- W4313177526 abstract "Introduction. The practical method of calculating lattice elements of steel structures for local and general stability contains an internal contradiction. The general stability check assumes the presence of an additional branch bending arrow in the lattice plane, and the local stability check negates it, which does not guarantee local stability when checking the general stability of the lattice rod. The calculated combinations of forces at the ends of any structural element, under the action of the same calculated combinations of loads, almost always have different values. Consequently, the longitudinal forces in the branches of the lattice elements, separated by the calculated length from the lattice plane, will always be variable, which is not taken into account in the current design standards.
 
 Materials and methods. To eliminate the mentioned contradiction, an analytical method is proposed for solving the problem of general stability of lattice elements of steel structures, taking into account the provision of local stability of the most loaded branch. The solution of the problem of stability of a branch from the lattice plane (two-branched elements) is carried out using the inverse numerical-analytical method: according to a given stress-strain state in the most loaded section of the elastic branch, acting and fictitious, compensating for the development of plastic deformations, deformation forces are numerically determined. Then, by the inverse analytical solution of the deformation problem, the actual loading of the branch at its ends is established.
 
 Results. The coefficient of overall stability of lattice elements is determined by solving a quadratic equation that includes an additional dependence on the coefficient of stability of the branch in the lattice plane. The stability coefficient of the branch from the lattice plane is obtained in the general case of loading by a longitudinal force with different values of end eccentricities in combination with a uniformly distributed axial load.
 
 Conclusions. An analytical solution to the problem of general stability of lattice elements is proposed, taking into account the stability of the branch. The solution of the problem of stability of a branch from the lattice plane (two-branched elements) is obtained when it is actually loaded with a variable longitudinal force acting with different values of terminal eccentricities." @default.
- W4313177526 created "2023-01-06" @default.
- W4313177526 creator A5076771424 @default.
- W4313177526 date "2022-10-01" @default.
- W4313177526 modified "2023-10-01" @default.
- W4313177526 title "To the calculation of the stability of lattice elements of steel structures" @default.
- W4313177526 cites W2045806025 @default.
- W4313177526 cites W2899628417 @default.
- W4313177526 cites W3129561294 @default.
- W4313177526 cites W3140396620 @default.
- W4313177526 cites W3202642271 @default.
- W4313177526 doi "https://doi.org/10.22227/1997-0935.2022.10.1347-1357" @default.
- W4313177526 hasPublicationYear "2022" @default.
- W4313177526 type Work @default.
- W4313177526 citedByCount "0" @default.
- W4313177526 crossrefType "journal-article" @default.
- W4313177526 hasAuthorship W4313177526A5076771424 @default.
- W4313177526 hasBestOaLocation W43131775261 @default.
- W4313177526 hasConcept C112972136 @default.
- W4313177526 hasConcept C119857082 @default.
- W4313177526 hasConcept C121332964 @default.
- W4313177526 hasConcept C127413603 @default.
- W4313177526 hasConcept C135628077 @default.
- W4313177526 hasConcept C155673373 @default.
- W4313177526 hasConcept C207467116 @default.
- W4313177526 hasConcept C24890656 @default.
- W4313177526 hasConcept C2524010 @default.
- W4313177526 hasConcept C2781204021 @default.
- W4313177526 hasConcept C33923547 @default.
- W4313177526 hasConcept C41008148 @default.
- W4313177526 hasConcept C66938386 @default.
- W4313177526 hasConceptScore W4313177526C112972136 @default.
- W4313177526 hasConceptScore W4313177526C119857082 @default.
- W4313177526 hasConceptScore W4313177526C121332964 @default.
- W4313177526 hasConceptScore W4313177526C127413603 @default.
- W4313177526 hasConceptScore W4313177526C135628077 @default.
- W4313177526 hasConceptScore W4313177526C155673373 @default.
- W4313177526 hasConceptScore W4313177526C207467116 @default.
- W4313177526 hasConceptScore W4313177526C24890656 @default.
- W4313177526 hasConceptScore W4313177526C2524010 @default.
- W4313177526 hasConceptScore W4313177526C2781204021 @default.
- W4313177526 hasConceptScore W4313177526C33923547 @default.
- W4313177526 hasConceptScore W4313177526C41008148 @default.
- W4313177526 hasConceptScore W4313177526C66938386 @default.
- W4313177526 hasIssue "10" @default.
- W4313177526 hasLocation W43131775261 @default.
- W4313177526 hasOpenAccess W4313177526 @default.
- W4313177526 hasPrimaryLocation W43131775261 @default.
- W4313177526 hasRelatedWork W1528740851 @default.
- W4313177526 hasRelatedWork W1976313775 @default.
- W4313177526 hasRelatedWork W2013082111 @default.
- W4313177526 hasRelatedWork W2056104686 @default.
- W4313177526 hasRelatedWork W2080669347 @default.
- W4313177526 hasRelatedWork W2298446516 @default.
- W4313177526 hasRelatedWork W2356364244 @default.
- W4313177526 hasRelatedWork W2373459808 @default.
- W4313177526 hasRelatedWork W2393731822 @default.
- W4313177526 hasRelatedWork W4242766352 @default.
- W4313177526 isParatext "false" @default.
- W4313177526 isRetracted "false" @default.
- W4313177526 workType "article" @default.