Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313177839> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4313177839 endingPage "10168" @default.
- W4313177839 startingPage "10158" @default.
- W4313177839 abstract "This work aimed to adopt a transformer model combined with deep learning neural network to discuss the segmentation of medical ultrasound images. A network combining a transformer model with a deep neural network model (ConvTrans-Net) is proposed. The image content is preselected based on a multilayer perceptron and attention mechanism, different feature vectors are concatenated and fed into the multilayer perceptron, and the results of multiple attentions are mapped to a larger dimensional space using a feed-forward network. The lesion areas segmented by ultrasonic scan were analysed, and an attention mechanism and multilayer perceptron were combined to preselect image content. The performance and convergence of the model were analysed, and the Jaccard similarity coefficient precision and recall of the model were measured. In the experiment, two different iterative step sizes were selected, the convergence trend of the model increased with the increase in the number of iterative steps, and the model gradually stabilized. The Jaccard of ConvTrans-Net was 85.21%. The precision (85.17%) and recall (89.65%) were significantly higher than those of EfficientNet and DeepViT-L, and the differences were significant (P < 0.05). The experimental results show that the proposed model is stable, and the combination of Transformer model and deep learning neural network has a good effect on ultrasound image segmentation, which has some practical application value." @default.
- W4313177839 created "2023-01-06" @default.
- W4313177839 creator A5013208084 @default.
- W4313177839 creator A5048128949 @default.
- W4313177839 creator A5077496980 @default.
- W4313177839 date "2023-01-01" @default.
- W4313177839 modified "2023-09-30" @default.
- W4313177839 title "Medical Ultrasound Image Segmentation With Deep Learning Models" @default.
- W4313177839 cites W1903029394 @default.
- W4313177839 cites W1988790447 @default.
- W4313177839 cites W2003783387 @default.
- W4313177839 cites W2194775991 @default.
- W4313177839 cites W2327832663 @default.
- W4313177839 cites W2739046565 @default.
- W4313177839 cites W2906395823 @default.
- W4313177839 cites W2911964244 @default.
- W4313177839 cites W2963446712 @default.
- W4313177839 cites W2963592583 @default.
- W4313177839 cites W2971563774 @default.
- W4313177839 cites W2971649496 @default.
- W4313177839 cites W2996485613 @default.
- W4313177839 cites W2999124437 @default.
- W4313177839 cites W2999793929 @default.
- W4313177839 cites W3024836211 @default.
- W4313177839 cites W3025036301 @default.
- W4313177839 cites W3036242295 @default.
- W4313177839 cites W3084018576 @default.
- W4313177839 cites W3092694106 @default.
- W4313177839 cites W3097767912 @default.
- W4313177839 cites W3121523901 @default.
- W4313177839 cites W3167986199 @default.
- W4313177839 cites W3170871044 @default.
- W4313177839 cites W3182939109 @default.
- W4313177839 cites W3188404242 @default.
- W4313177839 cites W3202642596 @default.
- W4313177839 cites W3215567741 @default.
- W4313177839 cites W4200115241 @default.
- W4313177839 cites W4200413493 @default.
- W4313177839 cites W4221020680 @default.
- W4313177839 cites W4221086457 @default.
- W4313177839 cites W4224073284 @default.
- W4313177839 cites W4281616267 @default.
- W4313177839 cites W4284966855 @default.
- W4313177839 cites W813301878 @default.
- W4313177839 doi "https://doi.org/10.1109/access.2022.3225101" @default.
- W4313177839 hasPublicationYear "2023" @default.
- W4313177839 type Work @default.
- W4313177839 citedByCount "2" @default.
- W4313177839 countsByYear W43131778392022 @default.
- W4313177839 countsByYear W43131778392023 @default.
- W4313177839 crossrefType "journal-article" @default.
- W4313177839 hasAuthorship W4313177839A5013208084 @default.
- W4313177839 hasAuthorship W4313177839A5048128949 @default.
- W4313177839 hasAuthorship W4313177839A5077496980 @default.
- W4313177839 hasBestOaLocation W43131778391 @default.
- W4313177839 hasConcept C108583219 @default.
- W4313177839 hasConcept C121332964 @default.
- W4313177839 hasConcept C124504099 @default.
- W4313177839 hasConcept C153180895 @default.
- W4313177839 hasConcept C154945302 @default.
- W4313177839 hasConcept C165801399 @default.
- W4313177839 hasConcept C179717631 @default.
- W4313177839 hasConcept C203519979 @default.
- W4313177839 hasConcept C41008148 @default.
- W4313177839 hasConcept C50644808 @default.
- W4313177839 hasConcept C62520636 @default.
- W4313177839 hasConcept C66322947 @default.
- W4313177839 hasConcept C89600930 @default.
- W4313177839 hasConceptScore W4313177839C108583219 @default.
- W4313177839 hasConceptScore W4313177839C121332964 @default.
- W4313177839 hasConceptScore W4313177839C124504099 @default.
- W4313177839 hasConceptScore W4313177839C153180895 @default.
- W4313177839 hasConceptScore W4313177839C154945302 @default.
- W4313177839 hasConceptScore W4313177839C165801399 @default.
- W4313177839 hasConceptScore W4313177839C179717631 @default.
- W4313177839 hasConceptScore W4313177839C203519979 @default.
- W4313177839 hasConceptScore W4313177839C41008148 @default.
- W4313177839 hasConceptScore W4313177839C50644808 @default.
- W4313177839 hasConceptScore W4313177839C62520636 @default.
- W4313177839 hasConceptScore W4313177839C66322947 @default.
- W4313177839 hasConceptScore W4313177839C89600930 @default.
- W4313177839 hasLocation W43131778391 @default.
- W4313177839 hasOpenAccess W4313177839 @default.
- W4313177839 hasPrimaryLocation W43131778391 @default.
- W4313177839 hasRelatedWork W2441762250 @default.
- W4313177839 hasRelatedWork W2790662084 @default.
- W4313177839 hasRelatedWork W2954384599 @default.
- W4313177839 hasRelatedWork W2960184797 @default.
- W4313177839 hasRelatedWork W3012728910 @default.
- W4313177839 hasRelatedWork W3104734424 @default.
- W4313177839 hasRelatedWork W3135324209 @default.
- W4313177839 hasRelatedWork W3209779739 @default.
- W4313177839 hasRelatedWork W4226289457 @default.
- W4313177839 hasRelatedWork W4285827401 @default.
- W4313177839 hasVolume "11" @default.
- W4313177839 isParatext "false" @default.
- W4313177839 isRetracted "false" @default.
- W4313177839 workType "article" @default.