Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313178703> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4313178703 endingPage "510" @default.
- W4313178703 startingPage "500" @default.
- W4313178703 abstract "The Active and Assisted Living (AAL) paradigm has helped the expansion of the use of sensors, which is increasingly common in research work related to activity monitoring. However, one of the major disadvantages found in using sensors inside the home or other types of environment to monitor activities is the non-acceptance by users of having sensors around them because they may see their privacy compromised. Therefore, nowadays it is important to search for non-invasive and low-cost sensors that provide the user with the security and accessibility to feel comfortable with them. In this work a case study has been carried out with the design and construction of a Metal Oxide Semiconductors (MOS) sensor array with which it is intended to monitor the type of food used in the kitchen by means of the K-Nearest Neighbours (K-NN) machine learning method. Specifically, the case study presented seeks to differentiate between bananas, lemons, chorizo and prawns in a first approach as an intelligent electronic nose. Gas sensors have been used to take advantage of their non-invasive character for the user, although the disadvantage of not being widely explored in the scientific literature has been found. The results obtained in the case study presented in this paper to classify these four foods have been promising to advance in this research topic." @default.
- W4313178703 created "2023-01-06" @default.
- W4313178703 creator A5014653405 @default.
- W4313178703 creator A5016384154 @default.
- W4313178703 creator A5031229907 @default.
- W4313178703 creator A5035808386 @default.
- W4313178703 creator A5078997843 @default.
- W4313178703 date "2022-01-01" @default.
- W4313178703 modified "2023-10-18" @default.
- W4313178703 title "Classification of Food Types in a Box with Gas Sensors Using a Machine Learning Method. Case Study of Intelligent Electronic Nose" @default.
- W4313178703 cites W1548644355 @default.
- W4313178703 cites W1991445255 @default.
- W4313178703 cites W1993619213 @default.
- W4313178703 cites W2006649594 @default.
- W4313178703 cites W2014164219 @default.
- W4313178703 cites W204691429 @default.
- W4313178703 cites W2055758936 @default.
- W4313178703 cites W2090848258 @default.
- W4313178703 cites W2317062416 @default.
- W4313178703 cites W2325848814 @default.
- W4313178703 cites W2578852295 @default.
- W4313178703 cites W2810659879 @default.
- W4313178703 cites W2893752867 @default.
- W4313178703 cites W2901665027 @default.
- W4313178703 cites W2912293709 @default.
- W4313178703 cites W2952455565 @default.
- W4313178703 cites W3023448038 @default.
- W4313178703 cites W3023508214 @default.
- W4313178703 cites W3102635930 @default.
- W4313178703 cites W4225162826 @default.
- W4313178703 doi "https://doi.org/10.1007/978-3-031-20319-0_37" @default.
- W4313178703 hasPublicationYear "2022" @default.
- W4313178703 type Work @default.
- W4313178703 citedByCount "0" @default.
- W4313178703 crossrefType "book-chapter" @default.
- W4313178703 hasAuthorship W4313178703A5014653405 @default.
- W4313178703 hasAuthorship W4313178703A5016384154 @default.
- W4313178703 hasAuthorship W4313178703A5031229907 @default.
- W4313178703 hasAuthorship W4313178703A5035808386 @default.
- W4313178703 hasAuthorship W4313178703A5078997843 @default.
- W4313178703 hasConcept C107457646 @default.
- W4313178703 hasConcept C119857082 @default.
- W4313178703 hasConcept C127413603 @default.
- W4313178703 hasConcept C154945302 @default.
- W4313178703 hasConcept C18762648 @default.
- W4313178703 hasConcept C23895516 @default.
- W4313178703 hasConcept C2777673361 @default.
- W4313178703 hasConcept C41008148 @default.
- W4313178703 hasConcept C66251956 @default.
- W4313178703 hasConcept C78519656 @default.
- W4313178703 hasConceptScore W4313178703C107457646 @default.
- W4313178703 hasConceptScore W4313178703C119857082 @default.
- W4313178703 hasConceptScore W4313178703C127413603 @default.
- W4313178703 hasConceptScore W4313178703C154945302 @default.
- W4313178703 hasConceptScore W4313178703C18762648 @default.
- W4313178703 hasConceptScore W4313178703C23895516 @default.
- W4313178703 hasConceptScore W4313178703C2777673361 @default.
- W4313178703 hasConceptScore W4313178703C41008148 @default.
- W4313178703 hasConceptScore W4313178703C66251956 @default.
- W4313178703 hasConceptScore W4313178703C78519656 @default.
- W4313178703 hasLocation W43131787031 @default.
- W4313178703 hasOpenAccess W4313178703 @default.
- W4313178703 hasPrimaryLocation W43131787031 @default.
- W4313178703 hasRelatedWork W1984201123 @default.
- W4313178703 hasRelatedWork W2357140647 @default.
- W4313178703 hasRelatedWork W2363183862 @default.
- W4313178703 hasRelatedWork W2371500231 @default.
- W4313178703 hasRelatedWork W2961085424 @default.
- W4313178703 hasRelatedWork W4220794526 @default.
- W4313178703 hasRelatedWork W4306674287 @default.
- W4313178703 hasRelatedWork W4313178703 @default.
- W4313178703 hasRelatedWork W4366147034 @default.
- W4313178703 hasRelatedWork W4224009465 @default.
- W4313178703 isParatext "false" @default.
- W4313178703 isRetracted "false" @default.
- W4313178703 workType "book-chapter" @default.