Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313180611> ?p ?o ?g. }
- W4313180611 endingPage "15" @default.
- W4313180611 startingPage "1" @default.
- W4313180611 abstract "Remotely sensed soil moisture (SM) dataset with well accuracy and fine spatiotemporal resolution is very valuable in various fields. Downscaling is a promising way to obtain such an SM dataset. There are currently two basic methodologies in the downscaling with satellite datasets, i.e., the machine learning (ML) methods and the physical or semi-physical (PH) models. This study focuses on exploring feasible ways to integrate them for boosting the performance of downscaling. Here, three parallel modes i.e., arithmetic average (Ari), geometric average (Geo), and weighted average (Wei), and two series modes i.e., first PH then ML (PH-ML) and first ML then PH (ML-PH) were developed and evaluated. A representative of PH, DSCALE_mod16, and three ML algorithms Random Forest, XGBoost, and LightGBM were used in this study. Microwave SM datasets from Soil Moisture Active and Passive Mission (SMAP), satellite datasets from MODIS, and in-situ SM observations spanning from April 2015 to December 2018 were employed in the evaluation. Spatial dynamic range, energy conservation, and precision preservation analyses were conducted as evaluation methods. Results demonstrated the PH-ML series mode outperformed the other coupling modes, which was even better than the better one of the PH and ML. The PH can first generate a valuable initial estimate, and the initial estimate’s advantages can be preserved while its errors can be suppressed by the ML. Resultantly, the ideology of first using the PH to obtain an initial estimate and then putting the initial estimate into the ML is suggested for further microwave SM downscaling." @default.
- W4313180611 created "2023-01-06" @default.
- W4313180611 creator A5020032935 @default.
- W4313180611 creator A5026265793 @default.
- W4313180611 creator A5070775744 @default.
- W4313180611 date "2022-01-01" @default.
- W4313180611 modified "2023-10-14" @default.
- W4313180611 title "Series or Parallel? An Exploration in Coupling Physical Model and Machine Learning Method for Disaggregating Satellite Microwave Soil Moisture" @default.
- W4313180611 cites W1483493965 @default.
- W4313180611 cites W1972392924 @default.
- W4313180611 cites W1986286235 @default.
- W4313180611 cites W1999411300 @default.
- W4313180611 cites W2004520553 @default.
- W4313180611 cites W2021765748 @default.
- W4313180611 cites W2027554150 @default.
- W4313180611 cites W2028979033 @default.
- W4313180611 cites W2056063911 @default.
- W4313180611 cites W2067426984 @default.
- W4313180611 cites W2082819436 @default.
- W4313180611 cites W2099196698 @default.
- W4313180611 cites W2107437432 @default.
- W4313180611 cites W2108651704 @default.
- W4313180611 cites W2116779222 @default.
- W4313180611 cites W2117995562 @default.
- W4313180611 cites W2118053982 @default.
- W4313180611 cites W2134686133 @default.
- W4313180611 cites W2135324568 @default.
- W4313180611 cites W2146149230 @default.
- W4313180611 cites W2150956979 @default.
- W4313180611 cites W2300653376 @default.
- W4313180611 cites W2322915731 @default.
- W4313180611 cites W2599868771 @default.
- W4313180611 cites W2617730512 @default.
- W4313180611 cites W2755232112 @default.
- W4313180611 cites W2777003700 @default.
- W4313180611 cites W2789758093 @default.
- W4313180611 cites W2802981068 @default.
- W4313180611 cites W2920947280 @default.
- W4313180611 cites W2921672664 @default.
- W4313180611 cites W2923750943 @default.
- W4313180611 cites W2970602317 @default.
- W4313180611 cites W2999951221 @default.
- W4313180611 cites W3004747764 @default.
- W4313180611 cites W3012397526 @default.
- W4313180611 cites W3027170800 @default.
- W4313180611 cites W3102476541 @default.
- W4313180611 cites W3118293400 @default.
- W4313180611 cites W3211369819 @default.
- W4313180611 doi "https://doi.org/10.1109/tgrs.2022.3216343" @default.
- W4313180611 hasPublicationYear "2022" @default.
- W4313180611 type Work @default.
- W4313180611 citedByCount "2" @default.
- W4313180611 countsByYear W43131806112023 @default.
- W4313180611 crossrefType "journal-article" @default.
- W4313180611 hasAuthorship W4313180611A5020032935 @default.
- W4313180611 hasAuthorship W4313180611A5026265793 @default.
- W4313180611 hasAuthorship W4313180611A5070775744 @default.
- W4313180611 hasBestOaLocation W43131806111 @default.
- W4313180611 hasConcept C107054158 @default.
- W4313180611 hasConcept C11413529 @default.
- W4313180611 hasConcept C119857082 @default.
- W4313180611 hasConcept C121332964 @default.
- W4313180611 hasConcept C12267149 @default.
- W4313180611 hasConcept C127313418 @default.
- W4313180611 hasConcept C1276947 @default.
- W4313180611 hasConcept C143724316 @default.
- W4313180611 hasConcept C151730666 @default.
- W4313180611 hasConcept C153294291 @default.
- W4313180611 hasConcept C154945302 @default.
- W4313180611 hasConcept C159985019 @default.
- W4313180611 hasConcept C169258074 @default.
- W4313180611 hasConcept C176864760 @default.
- W4313180611 hasConcept C187320778 @default.
- W4313180611 hasConcept C192562407 @default.
- W4313180611 hasConcept C19269812 @default.
- W4313180611 hasConcept C204323151 @default.
- W4313180611 hasConcept C24939127 @default.
- W4313180611 hasConcept C39399123 @default.
- W4313180611 hasConcept C39432304 @default.
- W4313180611 hasConcept C41008148 @default.
- W4313180611 hasConcept C41156917 @default.
- W4313180611 hasConcept C46686674 @default.
- W4313180611 hasConcept C62649853 @default.
- W4313180611 hasConceptScore W4313180611C107054158 @default.
- W4313180611 hasConceptScore W4313180611C11413529 @default.
- W4313180611 hasConceptScore W4313180611C119857082 @default.
- W4313180611 hasConceptScore W4313180611C121332964 @default.
- W4313180611 hasConceptScore W4313180611C12267149 @default.
- W4313180611 hasConceptScore W4313180611C127313418 @default.
- W4313180611 hasConceptScore W4313180611C1276947 @default.
- W4313180611 hasConceptScore W4313180611C143724316 @default.
- W4313180611 hasConceptScore W4313180611C151730666 @default.
- W4313180611 hasConceptScore W4313180611C153294291 @default.
- W4313180611 hasConceptScore W4313180611C154945302 @default.
- W4313180611 hasConceptScore W4313180611C159985019 @default.
- W4313180611 hasConceptScore W4313180611C169258074 @default.
- W4313180611 hasConceptScore W4313180611C176864760 @default.
- W4313180611 hasConceptScore W4313180611C187320778 @default.