Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313182104> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4313182104 abstract "Beach pollution through litter leads to various negative effects and mitigation and cleanup efforts are required to prevent accumulation. Automated monitoring is an important step towards this goal and has become much more feasible with recent developments in drone technology and artificial intelligence / object detection. To assess the potential of artificial intelligence for litter monitoring on Maltese beaches, two deep learning algorithms (YOLOv5 and Faster R-CNN) were trained on drone footage of beach litter and their detection performance compared. With a mean average precision (mAP) of 0.542 YOLOv5 outperformed Faster R-CNN (mAP: 0.328). In addition, detected litter objects were geolocated so that their position could be estimated with an average error of 3.7 meters." @default.
- W4313182104 created "2023-01-06" @default.
- W4313182104 creator A5017433512 @default.
- W4313182104 creator A5027205670 @default.
- W4313182104 creator A5030191054 @default.
- W4313182104 creator A5030609469 @default.
- W4313182104 creator A5057656001 @default.
- W4313182104 creator A5080323337 @default.
- W4313182104 date "2022-10-03" @default.
- W4313182104 modified "2023-09-27" @default.
- W4313182104 title "Detecting beach litter in drone images using deep learning" @default.
- W4313182104 cites W1536680647 @default.
- W4313182104 cites W1595298432 @default.
- W4313182104 cites W1863165817 @default.
- W4313182104 cites W1991395683 @default.
- W4313182104 cites W1998342072 @default.
- W4313182104 cites W2059569224 @default.
- W4313182104 cites W2102605133 @default.
- W4313182104 cites W2727835235 @default.
- W4313182104 cites W2753302284 @default.
- W4313182104 cites W2801798589 @default.
- W4313182104 cites W2808186704 @default.
- W4313182104 cites W2895805893 @default.
- W4313182104 cites W2963037989 @default.
- W4313182104 cites W2983121563 @default.
- W4313182104 cites W3022365164 @default.
- W4313182104 cites W3027034335 @default.
- W4313182104 cites W3042011474 @default.
- W4313182104 cites W3094752424 @default.
- W4313182104 cites W3125889112 @default.
- W4313182104 cites W3130268477 @default.
- W4313182104 cites W3138516171 @default.
- W4313182104 cites W3162651833 @default.
- W4313182104 cites W4231460047 @default.
- W4313182104 doi "https://doi.org/10.1109/metrosea55331.2022.9950804" @default.
- W4313182104 hasPublicationYear "2022" @default.
- W4313182104 type Work @default.
- W4313182104 citedByCount "0" @default.
- W4313182104 crossrefType "proceedings-article" @default.
- W4313182104 hasAuthorship W4313182104A5017433512 @default.
- W4313182104 hasAuthorship W4313182104A5027205670 @default.
- W4313182104 hasAuthorship W4313182104A5030191054 @default.
- W4313182104 hasAuthorship W4313182104A5030609469 @default.
- W4313182104 hasAuthorship W4313182104A5057656001 @default.
- W4313182104 hasAuthorship W4313182104A5080323337 @default.
- W4313182104 hasConcept C108583219 @default.
- W4313182104 hasConcept C119857082 @default.
- W4313182104 hasConcept C127413603 @default.
- W4313182104 hasConcept C153180895 @default.
- W4313182104 hasConcept C153294291 @default.
- W4313182104 hasConcept C154945302 @default.
- W4313182104 hasConcept C18903297 @default.
- W4313182104 hasConcept C205649164 @default.
- W4313182104 hasConcept C2776023875 @default.
- W4313182104 hasConcept C2776151529 @default.
- W4313182104 hasConcept C2779429622 @default.
- W4313182104 hasConcept C39432304 @default.
- W4313182104 hasConcept C41008148 @default.
- W4313182104 hasConcept C521259446 @default.
- W4313182104 hasConcept C54355233 @default.
- W4313182104 hasConcept C548081761 @default.
- W4313182104 hasConcept C59519942 @default.
- W4313182104 hasConcept C62329434 @default.
- W4313182104 hasConcept C86803240 @default.
- W4313182104 hasConceptScore W4313182104C108583219 @default.
- W4313182104 hasConceptScore W4313182104C119857082 @default.
- W4313182104 hasConceptScore W4313182104C127413603 @default.
- W4313182104 hasConceptScore W4313182104C153180895 @default.
- W4313182104 hasConceptScore W4313182104C153294291 @default.
- W4313182104 hasConceptScore W4313182104C154945302 @default.
- W4313182104 hasConceptScore W4313182104C18903297 @default.
- W4313182104 hasConceptScore W4313182104C205649164 @default.
- W4313182104 hasConceptScore W4313182104C2776023875 @default.
- W4313182104 hasConceptScore W4313182104C2776151529 @default.
- W4313182104 hasConceptScore W4313182104C2779429622 @default.
- W4313182104 hasConceptScore W4313182104C39432304 @default.
- W4313182104 hasConceptScore W4313182104C41008148 @default.
- W4313182104 hasConceptScore W4313182104C521259446 @default.
- W4313182104 hasConceptScore W4313182104C54355233 @default.
- W4313182104 hasConceptScore W4313182104C548081761 @default.
- W4313182104 hasConceptScore W4313182104C59519942 @default.
- W4313182104 hasConceptScore W4313182104C62329434 @default.
- W4313182104 hasConceptScore W4313182104C86803240 @default.
- W4313182104 hasLocation W43131821041 @default.
- W4313182104 hasOpenAccess W4313182104 @default.
- W4313182104 hasPrimaryLocation W43131821041 @default.
- W4313182104 hasRelatedWork W2970686063 @default.
- W4313182104 hasRelatedWork W2996006985 @default.
- W4313182104 hasRelatedWork W3159866145 @default.
- W4313182104 hasRelatedWork W3197607112 @default.
- W4313182104 hasRelatedWork W4220882927 @default.
- W4313182104 hasRelatedWork W4223943233 @default.
- W4313182104 hasRelatedWork W4285183766 @default.
- W4313182104 hasRelatedWork W4312200629 @default.
- W4313182104 hasRelatedWork W4320731732 @default.
- W4313182104 hasRelatedWork W4360585206 @default.
- W4313182104 isParatext "false" @default.
- W4313182104 isRetracted "false" @default.
- W4313182104 workType "article" @default.