Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313183010> ?p ?o ?g. }
- W4313183010 endingPage "539" @default.
- W4313183010 startingPage "523" @default.
- W4313183010 abstract "The theory of natural landscapes is one of the central and most complex concepts of modern physical geography. As is well known, in Western science, the concept of “landscape” is recognized only as a general one and is usually used to designate geosystems that have been exposed to anthropogenic influence for a long time. In this regard, geoinformation modeling all over the world (outside Russia) in recent decades has been mainly devoted to obtaining the so-called “landscape cover” Landuse-Landcover, which represents some kind of land use types, fragments of cultural landscape and urbanized areas mixture. Attempts at geoinformation modeling aimed at delimiting territorial natural complexes in the West and developing predictive maps of vegetation, soil cover and “habitats” are similar in content and algorithms to the approaches used for semi-automated mapping of natural landscapes. The development of synthetic geoinformation modeling methods was largely associated with overcoming the theoretical difficulties and controversial “plots” of Russian landscape science, which include ideas about the role of the morpholithogenic basis and biota of the landscape, taking into account the “leading” factors of differentiation, the presence of objective spatial hierarchical levels of landscape differentiation, and others. In this article, using the example of a key area of the Elbrus Region National Park, the capabilities of the traditional technique of expert-manual mapping are compared with mapping in a geoinformation environment. It is shown that the intuitive actions taken by an expert drawing a landscape map, although not strictly algorithmic in reality, are nevertheless close in content to complex variants of cluster analysis and decision trees. It is substantiated that the best option for landscape synthesis is not an overlay of finite classes of the morpholithogenic base and biota, but a joint analysis (cluster or isocluster classification) of many initial variables, in particular, geomorphometric parameters and landscape-vegetation indices. Supervised classifications with the creation of training files based on the author’s manual landscape maps give the worst result compared to uncontrolled ones, which, firstly, indicates the inaccuracy of the drawn maps, and secondly, the authors’ failure to comply with any strict algorithms and phenomena, which may be labeled as “changing the rules on the fly”." @default.
- W4313183010 created "2023-01-06" @default.
- W4313183010 creator A5015102096 @default.
- W4313183010 creator A5046057640 @default.
- W4313183010 creator A5049865167 @default.
- W4313183010 date "2022-01-01" @default.
- W4313183010 modified "2023-09-25" @default.
- W4313183010 title "A comparison of GIS landscape modeling and traditional landscape mapping (by the example of the Elbrus region)" @default.
- W4313183010 cites W130131633 @default.
- W4313183010 cites W1608560124 @default.
- W4313183010 cites W1970971564 @default.
- W4313183010 cites W1971414292 @default.
- W4313183010 cites W1992684295 @default.
- W4313183010 cites W1997283462 @default.
- W4313183010 cites W2005202386 @default.
- W4313183010 cites W2040049981 @default.
- W4313183010 cites W2049647840 @default.
- W4313183010 cites W2073018583 @default.
- W4313183010 cites W2080976015 @default.
- W4313183010 cites W2084087917 @default.
- W4313183010 cites W2137446479 @default.
- W4313183010 cites W2146235546 @default.
- W4313183010 cites W2292233468 @default.
- W4313183010 cites W2761732943 @default.
- W4313183010 cites W2789332285 @default.
- W4313183010 cites W2793927960 @default.
- W4313183010 cites W2795837405 @default.
- W4313183010 cites W3004881050 @default.
- W4313183010 cites W4200561054 @default.
- W4313183010 cites W4211035090 @default.
- W4313183010 cites W4294631018 @default.
- W4313183010 cites W641746927 @default.
- W4313183010 doi "https://doi.org/10.35595/2414-9179-2022-1-28-523-539" @default.
- W4313183010 hasPublicationYear "2022" @default.
- W4313183010 type Work @default.
- W4313183010 citedByCount "0" @default.
- W4313183010 crossrefType "journal-article" @default.
- W4313183010 hasAuthorship W4313183010A5015102096 @default.
- W4313183010 hasAuthorship W4313183010A5046057640 @default.
- W4313183010 hasAuthorship W4313183010A5049865167 @default.
- W4313183010 hasBestOaLocation W43131830101 @default.
- W4313183010 hasConcept C107826830 @default.
- W4313183010 hasConcept C108865711 @default.
- W4313183010 hasConcept C12429862 @default.
- W4313183010 hasConcept C127413603 @default.
- W4313183010 hasConcept C12780434 @default.
- W4313183010 hasConcept C129216166 @default.
- W4313183010 hasConcept C147176958 @default.
- W4313183010 hasConcept C147858270 @default.
- W4313183010 hasConcept C166957645 @default.
- W4313183010 hasConcept C185933670 @default.
- W4313183010 hasConcept C18903297 @default.
- W4313183010 hasConcept C205649164 @default.
- W4313183010 hasConcept C2776608160 @default.
- W4313183010 hasConcept C2780648208 @default.
- W4313183010 hasConcept C37884843 @default.
- W4313183010 hasConcept C39432304 @default.
- W4313183010 hasConcept C41856607 @default.
- W4313183010 hasConcept C4792198 @default.
- W4313183010 hasConcept C58640448 @default.
- W4313183010 hasConcept C86803240 @default.
- W4313183010 hasConcept C87690585 @default.
- W4313183010 hasConceptScore W4313183010C107826830 @default.
- W4313183010 hasConceptScore W4313183010C108865711 @default.
- W4313183010 hasConceptScore W4313183010C12429862 @default.
- W4313183010 hasConceptScore W4313183010C127413603 @default.
- W4313183010 hasConceptScore W4313183010C12780434 @default.
- W4313183010 hasConceptScore W4313183010C129216166 @default.
- W4313183010 hasConceptScore W4313183010C147176958 @default.
- W4313183010 hasConceptScore W4313183010C147858270 @default.
- W4313183010 hasConceptScore W4313183010C166957645 @default.
- W4313183010 hasConceptScore W4313183010C185933670 @default.
- W4313183010 hasConceptScore W4313183010C18903297 @default.
- W4313183010 hasConceptScore W4313183010C205649164 @default.
- W4313183010 hasConceptScore W4313183010C2776608160 @default.
- W4313183010 hasConceptScore W4313183010C2780648208 @default.
- W4313183010 hasConceptScore W4313183010C37884843 @default.
- W4313183010 hasConceptScore W4313183010C39432304 @default.
- W4313183010 hasConceptScore W4313183010C41856607 @default.
- W4313183010 hasConceptScore W4313183010C4792198 @default.
- W4313183010 hasConceptScore W4313183010C58640448 @default.
- W4313183010 hasConceptScore W4313183010C86803240 @default.
- W4313183010 hasConceptScore W4313183010C87690585 @default.
- W4313183010 hasIssue "1" @default.
- W4313183010 hasLocation W43131830101 @default.
- W4313183010 hasOpenAccess W4313183010 @default.
- W4313183010 hasPrimaryLocation W43131830101 @default.
- W4313183010 hasRelatedWork W2040521078 @default.
- W4313183010 hasRelatedWork W2348576059 @default.
- W4313183010 hasRelatedWork W2383980812 @default.
- W4313183010 hasRelatedWork W2922766277 @default.
- W4313183010 hasRelatedWork W2940653260 @default.
- W4313183010 hasRelatedWork W3197372237 @default.
- W4313183010 hasRelatedWork W3203783640 @default.
- W4313183010 hasRelatedWork W341480308 @default.
- W4313183010 hasRelatedWork W4313183010 @default.
- W4313183010 hasRelatedWork W1610299182 @default.
- W4313183010 hasVolume "28" @default.