Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313183247> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4313183247 endingPage "129" @default.
- W4313183247 startingPage "113" @default.
- W4313183247 abstract "Due to the increasing technical complexity of products and market pressure, the demands in the semiconductor industry are rising with respect to quality, performance, and time to market. Root cause analysis and risk assessment are crucial elements for success in fulfilling these demands. As a result, there is an ever-growing number of technical documents, which potentially contain valuable information serving as a base to inform development and production. Experts need to cope with this large number of technical documents, for example, to generate new hypotheses to identify possible root causes of deviations or potential risks in the ramp-up and production phase of new products. Unfortunately, most of the technical documents are unstructured, making processing them even more tedious. New advances in computer science, specifically artificial intelligence (AI), open the door for a higher degree of automation of knowledge management tools to support experts. Knowledge bases such as knowledge graphs allow for representing complex information but need to be created for each domain. Novel state-of-the-art graph embedding algorithms showed promising results 114in complementing knowledge bases with new relations. Complementary to knowledge base completion, language models trained on large textual corpora have demonstrated their ability to capture complex semantics. This paper proposes a new expert system concept for failure root cause analysis and risk assessment in the semiconductor industry, which leverages the advanced graph embeddings in combination with language models. The main challenges in this setting are the type of relations of interest, which are causal, and the language being used, which is highly domain-specific. Thus, we devised AI for consistency improvement of the data, predicting new links, and information extraction from unstructured data. The information extraction is conducted by levaraging domain specific ontologies and by focusing on presence of causal language." @default.
- W4313183247 created "2023-01-06" @default.
- W4313183247 creator A5004975090 @default.
- W4313183247 creator A5014398832 @default.
- W4313183247 creator A5020182834 @default.
- W4313183247 creator A5024898734 @default.
- W4313183247 creator A5046892607 @default.
- W4313183247 creator A5064545304 @default.
- W4313183247 creator A5072129309 @default.
- W4313183247 creator A5084476049 @default.
- W4313183247 date "2022-09-01" @default.
- W4313183247 modified "2023-09-26" @default.
- W4313183247 title "AI-Based Knowledge Management System for Risk Assessment and Root Cause Analysis in Semiconductor Industry" @default.
- W4313183247 doi "https://doi.org/10.1201/9781003337232-11" @default.
- W4313183247 hasPublicationYear "2022" @default.
- W4313183247 type Work @default.
- W4313183247 citedByCount "0" @default.
- W4313183247 crossrefType "book-chapter" @default.
- W4313183247 hasAuthorship W4313183247A5004975090 @default.
- W4313183247 hasAuthorship W4313183247A5014398832 @default.
- W4313183247 hasAuthorship W4313183247A5020182834 @default.
- W4313183247 hasAuthorship W4313183247A5024898734 @default.
- W4313183247 hasAuthorship W4313183247A5046892607 @default.
- W4313183247 hasAuthorship W4313183247A5064545304 @default.
- W4313183247 hasAuthorship W4313183247A5072129309 @default.
- W4313183247 hasAuthorship W4313183247A5084476049 @default.
- W4313183247 hasBestOaLocation W43131832471 @default.
- W4313183247 hasConcept C112930515 @default.
- W4313183247 hasConcept C117671659 @default.
- W4313183247 hasConcept C127413603 @default.
- W4313183247 hasConcept C130963320 @default.
- W4313183247 hasConcept C138885662 @default.
- W4313183247 hasConcept C144133560 @default.
- W4313183247 hasConcept C171078966 @default.
- W4313183247 hasConcept C200601418 @default.
- W4313183247 hasConcept C2987888538 @default.
- W4313183247 hasConcept C41008148 @default.
- W4313183247 hasConcept C41895202 @default.
- W4313183247 hasConcept C84945661 @default.
- W4313183247 hasConceptScore W4313183247C112930515 @default.
- W4313183247 hasConceptScore W4313183247C117671659 @default.
- W4313183247 hasConceptScore W4313183247C127413603 @default.
- W4313183247 hasConceptScore W4313183247C130963320 @default.
- W4313183247 hasConceptScore W4313183247C138885662 @default.
- W4313183247 hasConceptScore W4313183247C144133560 @default.
- W4313183247 hasConceptScore W4313183247C171078966 @default.
- W4313183247 hasConceptScore W4313183247C200601418 @default.
- W4313183247 hasConceptScore W4313183247C2987888538 @default.
- W4313183247 hasConceptScore W4313183247C41008148 @default.
- W4313183247 hasConceptScore W4313183247C41895202 @default.
- W4313183247 hasConceptScore W4313183247C84945661 @default.
- W4313183247 hasLocation W43131832471 @default.
- W4313183247 hasOpenAccess W4313183247 @default.
- W4313183247 hasPrimaryLocation W43131832471 @default.
- W4313183247 hasRelatedWork W155755685 @default.
- W4313183247 hasRelatedWork W2030594396 @default.
- W4313183247 hasRelatedWork W2056250485 @default.
- W4313183247 hasRelatedWork W2202104725 @default.
- W4313183247 hasRelatedWork W2535098331 @default.
- W4313183247 hasRelatedWork W3045668461 @default.
- W4313183247 hasRelatedWork W39491745 @default.
- W4313183247 hasRelatedWork W4255366506 @default.
- W4313183247 hasRelatedWork W167622659 @default.
- W4313183247 hasRelatedWork W2885334669 @default.
- W4313183247 isParatext "false" @default.
- W4313183247 isRetracted "false" @default.
- W4313183247 workType "book-chapter" @default.