Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313183855> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4313183855 abstract "The typical farming procedure requires a significant quantity of water use, which results in water waste. An automatic watering technology is desperately required to decrease the amount of water wasted during this time-consuming activity. Because of the advancements in machine learning (ML) and the Internet of Things (IoT), there is a significant benefit to developing a smart platform that does this work successfully and with minimum human intervention. It is recommended in this paper that landowners use a minimal amount of involvement in an IoT-enabled machine learning-trained recommender system for effective water consumption. The Internet of Things (IoT) sensors are put in the agricultural field to gather accurate information about the soil and environmental condition. Upon collection, the information is moved and saved in a fog system, which uses machine learning algorithms to analysis the information and provide watering recommendations towards the producer. A built-in relay switch has been included into this suggestion system in order to make it more resilient and adaptable. The results of the experiments show that the suggested system works admirably on both our own gathered information and also the agricultural information from NIT Raipur." @default.
- W4313183855 created "2023-01-06" @default.
- W4313183855 creator A5008433194 @default.
- W4313183855 creator A5019320942 @default.
- W4313183855 creator A5039410557 @default.
- W4313183855 creator A5068774476 @default.
- W4313183855 creator A5073245873 @default.
- W4313183855 date "2022-07-15" @default.
- W4313183855 modified "2023-09-27" @default.
- W4313183855 title "IoT and SVM-based Smart Irrigation System for Sustainable Water Usage" @default.
- W4313183855 cites W2784022633 @default.
- W4313183855 cites W2798526926 @default.
- W4313183855 cites W2896715775 @default.
- W4313183855 cites W2908948085 @default.
- W4313183855 cites W2943184968 @default.
- W4313183855 cites W2947878980 @default.
- W4313183855 cites W2969506381 @default.
- W4313183855 cites W2969943853 @default.
- W4313183855 cites W2981758061 @default.
- W4313183855 cites W2989693684 @default.
- W4313183855 cites W2991463474 @default.
- W4313183855 cites W3134807623 @default.
- W4313183855 cites W3166150996 @default.
- W4313183855 cites W3198332348 @default.
- W4313183855 cites W3215930686 @default.
- W4313183855 doi "https://doi.org/10.1109/icses55317.2022.9914104" @default.
- W4313183855 hasPublicationYear "2022" @default.
- W4313183855 type Work @default.
- W4313183855 citedByCount "1" @default.
- W4313183855 countsByYear W43131838552023 @default.
- W4313183855 crossrefType "proceedings-article" @default.
- W4313183855 hasAuthorship W4313183855A5008433194 @default.
- W4313183855 hasAuthorship W4313183855A5019320942 @default.
- W4313183855 hasAuthorship W4313183855A5039410557 @default.
- W4313183855 hasAuthorship W4313183855A5068774476 @default.
- W4313183855 hasAuthorship W4313183855A5073245873 @default.
- W4313183855 hasConcept C110875604 @default.
- W4313183855 hasConcept C118518473 @default.
- W4313183855 hasConcept C118552586 @default.
- W4313183855 hasConcept C119857082 @default.
- W4313183855 hasConcept C127413603 @default.
- W4313183855 hasConcept C136764020 @default.
- W4313183855 hasConcept C154945302 @default.
- W4313183855 hasConcept C15744967 @default.
- W4313183855 hasConcept C18762648 @default.
- W4313183855 hasConcept C18903297 @default.
- W4313183855 hasConcept C202444582 @default.
- W4313183855 hasConcept C2780665704 @default.
- W4313183855 hasConcept C33923547 @default.
- W4313183855 hasConcept C38652104 @default.
- W4313183855 hasConcept C41008148 @default.
- W4313183855 hasConcept C78519656 @default.
- W4313183855 hasConcept C81860439 @default.
- W4313183855 hasConcept C86803240 @default.
- W4313183855 hasConcept C88463610 @default.
- W4313183855 hasConcept C9652623 @default.
- W4313183855 hasConceptScore W4313183855C110875604 @default.
- W4313183855 hasConceptScore W4313183855C118518473 @default.
- W4313183855 hasConceptScore W4313183855C118552586 @default.
- W4313183855 hasConceptScore W4313183855C119857082 @default.
- W4313183855 hasConceptScore W4313183855C127413603 @default.
- W4313183855 hasConceptScore W4313183855C136764020 @default.
- W4313183855 hasConceptScore W4313183855C154945302 @default.
- W4313183855 hasConceptScore W4313183855C15744967 @default.
- W4313183855 hasConceptScore W4313183855C18762648 @default.
- W4313183855 hasConceptScore W4313183855C18903297 @default.
- W4313183855 hasConceptScore W4313183855C202444582 @default.
- W4313183855 hasConceptScore W4313183855C2780665704 @default.
- W4313183855 hasConceptScore W4313183855C33923547 @default.
- W4313183855 hasConceptScore W4313183855C38652104 @default.
- W4313183855 hasConceptScore W4313183855C41008148 @default.
- W4313183855 hasConceptScore W4313183855C78519656 @default.
- W4313183855 hasConceptScore W4313183855C81860439 @default.
- W4313183855 hasConceptScore W4313183855C86803240 @default.
- W4313183855 hasConceptScore W4313183855C88463610 @default.
- W4313183855 hasConceptScore W4313183855C9652623 @default.
- W4313183855 hasLocation W43131838551 @default.
- W4313183855 hasOpenAccess W4313183855 @default.
- W4313183855 hasPrimaryLocation W43131838551 @default.
- W4313183855 hasRelatedWork W2992181782 @default.
- W4313183855 hasRelatedWork W4226226896 @default.
- W4313183855 hasRelatedWork W4238224756 @default.
- W4313183855 hasRelatedWork W4283026920 @default.
- W4313183855 hasRelatedWork W4288754364 @default.
- W4313183855 hasRelatedWork W4308734192 @default.
- W4313183855 hasRelatedWork W4312831135 @default.
- W4313183855 hasRelatedWork W4317617272 @default.
- W4313183855 hasRelatedWork W4319987862 @default.
- W4313183855 hasRelatedWork W4321608687 @default.
- W4313183855 isParatext "false" @default.
- W4313183855 isRetracted "false" @default.
- W4313183855 workType "article" @default.