Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313187207> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4313187207 abstract "Automatic estimation of domestic activities from audio can be used to solve many problems, such as reducing the labor cost for nursing the elderly people. This study focuses on solving the problem of domestic activity clustering from audio. The target of domestic activity clustering is to cluster audio clips which belong to the same category of domestic activity into one cluster in an unsupervised way. In this paper, we propose a method of domestic activity clustering using a depthwise separable convolutional autoencoder network. In the proposed method, initial embeddings are learned by the depthwise separable convolutional autoencoder, and a clustering-oriented loss is designed to jointly optimize embedding refinement and cluster assignment. Different methods are evaluated on a public dataset (a derivative of the SINS dataset) used in the challenge on Detection and Classification of Acoustic Scenes and Events (DCASE) in 2018. Our method obtains the normalized mutual information (NMI) score of 54.46%, and the clustering accuracy (CA) score of 63.64%, and outperforms state-of-the-art methods in terms of NMI and CA. In addition, both computational complexity and memory requirement of our method is lower than that of previous deep-model-based methods. Codes: https://github.com/vinceasvp/domestic-activity-clustering-from-audio" @default.
- W4313187207 created "2023-01-06" @default.
- W4313187207 creator A5049691461 @default.
- W4313187207 creator A5055239917 @default.
- W4313187207 creator A5070863631 @default.
- W4313187207 creator A5087751248 @default.
- W4313187207 date "2022-09-26" @default.
- W4313187207 modified "2023-09-27" @default.
- W4313187207 title "Domestic Activity Clustering from Audio via Depthwise Separable Convolutional Autoencoder Network" @default.
- W4313187207 cites W1970088388 @default.
- W4313187207 cites W2037603696 @default.
- W4313187207 cites W2128437937 @default.
- W4313187207 cites W2194775991 @default.
- W4313187207 cites W2569249728 @default.
- W4313187207 cites W2617512665 @default.
- W4313187207 cites W2765741717 @default.
- W4313187207 cites W2775794021 @default.
- W4313187207 cites W2799400564 @default.
- W4313187207 cites W2890718983 @default.
- W4313187207 cites W2896862445 @default.
- W4313187207 cites W2963163009 @default.
- W4313187207 cites W2980689481 @default.
- W4313187207 cites W3015530480 @default.
- W4313187207 cites W3016227692 @default.
- W4313187207 cites W3034892239 @default.
- W4313187207 cites W3083274258 @default.
- W4313187207 cites W3091490309 @default.
- W4313187207 cites W3104924861 @default.
- W4313187207 cites W3160061063 @default.
- W4313187207 cites W3171617011 @default.
- W4313187207 cites W4206364333 @default.
- W4313187207 cites W4210634873 @default.
- W4313187207 cites W4238186852 @default.
- W4313187207 doi "https://doi.org/10.1109/mmsp55362.2022.9949512" @default.
- W4313187207 hasPublicationYear "2022" @default.
- W4313187207 type Work @default.
- W4313187207 citedByCount "1" @default.
- W4313187207 countsByYear W43131872072022 @default.
- W4313187207 crossrefType "proceedings-article" @default.
- W4313187207 hasAuthorship W4313187207A5049691461 @default.
- W4313187207 hasAuthorship W4313187207A5055239917 @default.
- W4313187207 hasAuthorship W4313187207A5070863631 @default.
- W4313187207 hasAuthorship W4313187207A5087751248 @default.
- W4313187207 hasBestOaLocation W43131872072 @default.
- W4313187207 hasConcept C101738243 @default.
- W4313187207 hasConcept C108583219 @default.
- W4313187207 hasConcept C124101348 @default.
- W4313187207 hasConcept C153180895 @default.
- W4313187207 hasConcept C154945302 @default.
- W4313187207 hasConcept C41008148 @default.
- W4313187207 hasConcept C41608201 @default.
- W4313187207 hasConcept C73555534 @default.
- W4313187207 hasConceptScore W4313187207C101738243 @default.
- W4313187207 hasConceptScore W4313187207C108583219 @default.
- W4313187207 hasConceptScore W4313187207C124101348 @default.
- W4313187207 hasConceptScore W4313187207C153180895 @default.
- W4313187207 hasConceptScore W4313187207C154945302 @default.
- W4313187207 hasConceptScore W4313187207C41008148 @default.
- W4313187207 hasConceptScore W4313187207C41608201 @default.
- W4313187207 hasConceptScore W4313187207C73555534 @default.
- W4313187207 hasFunder F4320321001 @default.
- W4313187207 hasLocation W43131872071 @default.
- W4313187207 hasLocation W43131872072 @default.
- W4313187207 hasOpenAccess W4313187207 @default.
- W4313187207 hasPrimaryLocation W43131872071 @default.
- W4313187207 hasRelatedWork W2572600474 @default.
- W4313187207 hasRelatedWork W2592385986 @default.
- W4313187207 hasRelatedWork W2776466379 @default.
- W4313187207 hasRelatedWork W2785535669 @default.
- W4313187207 hasRelatedWork W2897995864 @default.
- W4313187207 hasRelatedWork W2951632923 @default.
- W4313187207 hasRelatedWork W2998168123 @default.
- W4313187207 hasRelatedWork W3090006671 @default.
- W4313187207 hasRelatedWork W4220775285 @default.
- W4313187207 hasRelatedWork W4287995534 @default.
- W4313187207 isParatext "false" @default.
- W4313187207 isRetracted "false" @default.
- W4313187207 workType "article" @default.