Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313187466> ?p ?o ?g. }
- W4313187466 endingPage "228" @default.
- W4313187466 startingPage "210" @default.
- W4313187466 abstract "Coronavirus disease 2019 (COVID-19) is an ecumenical pandemic that has affected the whole world drastically by raising a global calamitous situation. Owing to this pernicious disease, millions of people have lost their lives. The scientists are still far from knowing how to tackle the coronavirus due to its multiple mutations found around the globe. The standard testing technique called polymerase chain reaction for the clinical diagnosis of COVID-19 is expensive and time consuming. However, to assist specialists and radiologists in COVID-19 detection and diagnosis, deep learning plays an important role. Many research efforts have been done that leverage deep learning techniques and technologies for the identification or categorization of COVID-19-positive patients, and these techniques are proved to be a powerful tool that can automatically detect or diagnose COVID-19 cases. In this article, we identify significant challenges regarding deep-learning-based systems and techniques that use different medical imaging modalities, including cough and breadth, chest X-ray, and computed tomography, to combat COVID-19 outbreak. We also pinpoint important research questions for each category of challenges." @default.
- W4313187466 created "2023-01-06" @default.
- W4313187466 creator A5040732176 @default.
- W4313187466 creator A5055203243 @default.
- W4313187466 creator A5072011650 @default.
- W4313187466 creator A5091305250 @default.
- W4313187466 date "2023-04-01" @default.
- W4313187466 modified "2023-09-29" @default.
- W4313187466 title "Deep-Learning-Based COVID-19 Detection: Challenges and Future Directions" @default.
- W4313187466 cites W2165801480 @default.
- W4313187466 cites W2283561682 @default.
- W4313187466 cites W2776807290 @default.
- W4313187466 cites W2791544114 @default.
- W4313187466 cites W2951095490 @default.
- W4313187466 cites W2961446758 @default.
- W4313187466 cites W2962858109 @default.
- W4313187466 cites W2979298088 @default.
- W4313187466 cites W2979780654 @default.
- W4313187466 cites W2980986395 @default.
- W4313187466 cites W3001118548 @default.
- W4313187466 cites W3003668884 @default.
- W4313187466 cites W3003901880 @default.
- W4313187466 cites W3004906315 @default.
- W4313187466 cites W3005366598 @default.
- W4313187466 cites W3006082171 @default.
- W4313187466 cites W3006110666 @default.
- W4313187466 cites W3006643024 @default.
- W4313187466 cites W3006882119 @default.
- W4313187466 cites W3007238890 @default.
- W4313187466 cites W3007355693 @default.
- W4313187466 cites W3007497549 @default.
- W4313187466 cites W3008698979 @default.
- W4313187466 cites W3008827533 @default.
- W4313187466 cites W3008985036 @default.
- W4313187466 cites W3009063690 @default.
- W4313187466 cites W3009126962 @default.
- W4313187466 cites W3010381061 @default.
- W4313187466 cites W3010819203 @default.
- W4313187466 cites W3011149445 @default.
- W4313187466 cites W3011614529 @default.
- W4313187466 cites W3012088940 @default.
- W4313187466 cites W3012290708 @default.
- W4313187466 cites W3012600720 @default.
- W4313187466 cites W3012625735 @default.
- W4313187466 cites W3013130152 @default.
- W4313187466 cites W3013601031 @default.
- W4313187466 cites W3013758358 @default.
- W4313187466 cites W3014561994 @default.
- W4313187466 cites W3015549660 @default.
- W4313187466 cites W3015857697 @default.
- W4313187466 cites W3015984951 @default.
- W4313187466 cites W3015998441 @default.
- W4313187466 cites W3016488464 @default.
- W4313187466 cites W3017117984 @default.
- W4313187466 cites W3017403618 @default.
- W4313187466 cites W3017855299 @default.
- W4313187466 cites W3019057362 @default.
- W4313187466 cites W3019283372 @default.
- W4313187466 cites W3019449959 @default.
- W4313187466 cites W3019531985 @default.
- W4313187466 cites W3020283781 @default.
- W4313187466 cites W3021654843 @default.
- W4313187466 cites W3023519397 @default.
- W4313187466 cites W3024620668 @default.
- W4313187466 cites W3025394897 @default.
- W4313187466 cites W3025520558 @default.
- W4313187466 cites W3025948831 @default.
- W4313187466 cites W3027682070 @default.
- W4313187466 cites W3030621456 @default.
- W4313187466 cites W3031621189 @default.
- W4313187466 cites W3032943795 @default.
- W4313187466 cites W3033229758 @default.
- W4313187466 cites W3033466636 @default.
- W4313187466 cites W3033616466 @default.
- W4313187466 cites W3034089691 @default.
- W4313187466 cites W3035378948 @default.
- W4313187466 cites W3035453025 @default.
- W4313187466 cites W3035467941 @default.
- W4313187466 cites W3035948502 @default.
- W4313187466 cites W3036416326 @default.
- W4313187466 cites W3036552116 @default.
- W4313187466 cites W3036638392 @default.
- W4313187466 cites W3036688711 @default.
- W4313187466 cites W3036866455 @default.
- W4313187466 cites W3037538421 @default.
- W4313187466 cites W3037621107 @default.
- W4313187466 cites W3037662149 @default.
- W4313187466 cites W3041041945 @default.
- W4313187466 cites W3042796256 @default.
- W4313187466 cites W3045045932 @default.
- W4313187466 cites W3045916062 @default.
- W4313187466 cites W3046280637 @default.
- W4313187466 cites W3047349135 @default.
- W4313187466 cites W3049757379 @default.
- W4313187466 cites W3082946543 @default.
- W4313187466 cites W3085360812 @default.
- W4313187466 cites W3085990892 @default.
- W4313187466 cites W3087219705 @default.