Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313188810> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4313188810 endingPage "297" @default.
- W4313188810 startingPage "286" @default.
- W4313188810 abstract "The application of machine learning algorithms to the diagnosis and analysis of Alzheimer’s disease (AD) from multimodal neuroimaging data is a current research hotspot. It remains a formidable challenge to learn brain region information and discover disease mechanisms from various magnetic resonance images (MRI). In this paper, we propose a simple but highly efficient end-to-end model, a multiscale autoencoder with structural-functional attention network (MASAN) to extract disease-related representations using T1-weighted Imaging (T1WI) and functional MRI (fMRI). Based on the attention mechanism, our model effectively learns the fused features of brain structure and function and finally is trained for the classification of Alzheimer’s disease. Compared with the fully convolutional network, the proposed method has further improvement in both accuracy and precision, leading by 3% to 5%. By visualizing the extracted embedding, the empirical results show that there are higher weights on putative AD-related brain regions (such as the hippocampus, amygdala, etc.), and these regions are much more informative in anatomical studies. Conversely, the cerebellum, parietal lobe, thalamus, brain stem, and ventral diencephalon have little predictive contribution." @default.
- W4313188810 created "2023-01-06" @default.
- W4313188810 creator A5008863606 @default.
- W4313188810 creator A5068387002 @default.
- W4313188810 creator A5090631148 @default.
- W4313188810 date "2022-01-01" @default.
- W4313188810 modified "2023-10-06" @default.
- W4313188810 title "Multiscale Autoencoder with Structural-Functional Attention Network for Alzheimer’s Disease Prediction" @default.
- W4313188810 cites W1881190292 @default.
- W4313188810 cites W1901129140 @default.
- W4313188810 cites W1971556651 @default.
- W4313188810 cites W1997858799 @default.
- W4313188810 cites W2011019850 @default.
- W4313188810 cites W2022983225 @default.
- W4313188810 cites W2074742486 @default.
- W4313188810 cites W2078524519 @default.
- W4313188810 cites W2555963685 @default.
- W4313188810 cites W2736114895 @default.
- W4313188810 cites W2769782531 @default.
- W4313188810 cites W2807662734 @default.
- W4313188810 cites W2811066123 @default.
- W4313188810 cites W2908469802 @default.
- W4313188810 cites W2910603148 @default.
- W4313188810 cites W2979674753 @default.
- W4313188810 cites W2992026644 @default.
- W4313188810 cites W3005600289 @default.
- W4313188810 cites W3016044763 @default.
- W4313188810 cites W3027389156 @default.
- W4313188810 cites W3037120822 @default.
- W4313188810 cites W3048602393 @default.
- W4313188810 cites W3082607403 @default.
- W4313188810 cites W3089973229 @default.
- W4313188810 cites W3091271707 @default.
- W4313188810 cites W3131740325 @default.
- W4313188810 cites W3137895856 @default.
- W4313188810 cites W3157129463 @default.
- W4313188810 cites W3201942884 @default.
- W4313188810 cites W3202760361 @default.
- W4313188810 cites W3204772083 @default.
- W4313188810 cites W3207983070 @default.
- W4313188810 cites W3209415657 @default.
- W4313188810 cites W3209681885 @default.
- W4313188810 cites W3215399882 @default.
- W4313188810 cites W4225506672 @default.
- W4313188810 cites W4225724954 @default.
- W4313188810 cites W4230561175 @default.
- W4313188810 cites W4283271720 @default.
- W4313188810 doi "https://doi.org/10.1007/978-3-031-18910-4_24" @default.
- W4313188810 hasPublicationYear "2022" @default.
- W4313188810 type Work @default.
- W4313188810 citedByCount "1" @default.
- W4313188810 countsByYear W43131888102023 @default.
- W4313188810 crossrefType "book-chapter" @default.
- W4313188810 hasAuthorship W4313188810A5008863606 @default.
- W4313188810 hasAuthorship W4313188810A5068387002 @default.
- W4313188810 hasAuthorship W4313188810A5090631148 @default.
- W4313188810 hasBestOaLocation W43131888102 @default.
- W4313188810 hasConcept C101738243 @default.
- W4313188810 hasConcept C108583219 @default.
- W4313188810 hasConcept C153180895 @default.
- W4313188810 hasConcept C154945302 @default.
- W4313188810 hasConcept C15744967 @default.
- W4313188810 hasConcept C169760540 @default.
- W4313188810 hasConcept C2779226451 @default.
- W4313188810 hasConcept C2779246727 @default.
- W4313188810 hasConcept C41008148 @default.
- W4313188810 hasConcept C58693492 @default.
- W4313188810 hasConceptScore W4313188810C101738243 @default.
- W4313188810 hasConceptScore W4313188810C108583219 @default.
- W4313188810 hasConceptScore W4313188810C153180895 @default.
- W4313188810 hasConceptScore W4313188810C154945302 @default.
- W4313188810 hasConceptScore W4313188810C15744967 @default.
- W4313188810 hasConceptScore W4313188810C169760540 @default.
- W4313188810 hasConceptScore W4313188810C2779226451 @default.
- W4313188810 hasConceptScore W4313188810C2779246727 @default.
- W4313188810 hasConceptScore W4313188810C41008148 @default.
- W4313188810 hasConceptScore W4313188810C58693492 @default.
- W4313188810 hasLocation W43131888101 @default.
- W4313188810 hasLocation W43131888102 @default.
- W4313188810 hasOpenAccess W4313188810 @default.
- W4313188810 hasPrimaryLocation W43131888101 @default.
- W4313188810 hasRelatedWork W2669956259 @default.
- W4313188810 hasRelatedWork W2776466379 @default.
- W4313188810 hasRelatedWork W2897995864 @default.
- W4313188810 hasRelatedWork W2939353110 @default.
- W4313188810 hasRelatedWork W2943474764 @default.
- W4313188810 hasRelatedWork W2998168123 @default.
- W4313188810 hasRelatedWork W3002526821 @default.
- W4313188810 hasRelatedWork W4220775285 @default.
- W4313188810 hasRelatedWork W4287995534 @default.
- W4313188810 hasRelatedWork W48499914 @default.
- W4313188810 isParatext "false" @default.
- W4313188810 isRetracted "false" @default.
- W4313188810 workType "book-chapter" @default.