Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313193082> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4313193082 endingPage "698" @default.
- W4313193082 startingPage "681" @default.
- W4313193082 abstract "Today, world is moving towards digital economy; each and every application demands samples of data from real world to analyse every piece of information for better productivity. With the rapid reduction in the cost of sensors, in next five years, sensors can be deployed and used in all sectors and there will be seamless communications among all the applications. IoT devices will directly share data using open flow standards and connect to World Wide Web through Internet. Today, most of the data generated from physical sensors is data of specific applications which cannot be used as input for other domain applications. Many physical sensors deployed in one domain will only be used by that specific application. With the convergence of IoT and cloud computing, the data generated from physical sensors of different applications deployed at different scenarios can be imported on cloud environment which in turn can be used by all the applications. It is high time to address high usage of energy manageable data centres. It is time to identify and eliminate inefficiencies in delivering electric services to IT resources. This can be achieved by enhancing the efficiency of physical infrastructure, adopting efficient resource allocation and management algorithms. This paper focuses on energy management of IT equipments in virtualized sensor cloud data centre. This work emphasizes on minimizing energy consumption in virtualized sensor cloud infrastructure. We have implemented S-learning algorithm on sensor cloud environment and proved that the solution is able to handle dynamic requests. For dynamic request generation rate, the response time, violation of the SLA and the energy utilisation are measured. The algorithm is quite effective on three parameters: quick response time, reduced number of SLA violations and reduced energy consumption. The amount of energy conserved is measured and compared with other approaches. The model has built on a test bed with dynamic data requests and measures the number of SLA violations in the system wherein the proposed scheduling method is associated with other methods and found this solution is more efficient." @default.
- W4313193082 created "2023-01-06" @default.
- W4313193082 creator A5015984331 @default.
- W4313193082 creator A5033078317 @default.
- W4313193082 creator A5064649083 @default.
- W4313193082 date "2022-01-01" @default.
- W4313193082 modified "2023-09-28" @default.
- W4313193082 title "A Study and Analysis of Energy Efficient Machine Learning Algorithm for Virtualized Sensor Cloud Infrastructure" @default.
- W4313193082 cites W1977367431 @default.
- W4313193082 cites W2008793502 @default.
- W4313193082 cites W2014008637 @default.
- W4313193082 cites W2024404542 @default.
- W4313193082 cites W2033799165 @default.
- W4313193082 cites W2037942368 @default.
- W4313193082 cites W2046541517 @default.
- W4313193082 cites W2079211769 @default.
- W4313193082 cites W594621870 @default.
- W4313193082 doi "https://doi.org/10.1007/978-981-19-2350-0_65" @default.
- W4313193082 hasPublicationYear "2022" @default.
- W4313193082 type Work @default.
- W4313193082 citedByCount "0" @default.
- W4313193082 crossrefType "book-chapter" @default.
- W4313193082 hasAuthorship W4313193082A5015984331 @default.
- W4313193082 hasAuthorship W4313193082A5033078317 @default.
- W4313193082 hasAuthorship W4313193082A5064649083 @default.
- W4313193082 hasConcept C111919701 @default.
- W4313193082 hasConcept C119599485 @default.
- W4313193082 hasConcept C120314980 @default.
- W4313193082 hasConcept C127413603 @default.
- W4313193082 hasConcept C153740404 @default.
- W4313193082 hasConcept C24590314 @default.
- W4313193082 hasConcept C25344961 @default.
- W4313193082 hasConcept C2742236 @default.
- W4313193082 hasConcept C2780165032 @default.
- W4313193082 hasConcept C31258907 @default.
- W4313193082 hasConcept C41008148 @default.
- W4313193082 hasConcept C79403827 @default.
- W4313193082 hasConcept C79974875 @default.
- W4313193082 hasConceptScore W4313193082C111919701 @default.
- W4313193082 hasConceptScore W4313193082C119599485 @default.
- W4313193082 hasConceptScore W4313193082C120314980 @default.
- W4313193082 hasConceptScore W4313193082C127413603 @default.
- W4313193082 hasConceptScore W4313193082C153740404 @default.
- W4313193082 hasConceptScore W4313193082C24590314 @default.
- W4313193082 hasConceptScore W4313193082C25344961 @default.
- W4313193082 hasConceptScore W4313193082C2742236 @default.
- W4313193082 hasConceptScore W4313193082C2780165032 @default.
- W4313193082 hasConceptScore W4313193082C31258907 @default.
- W4313193082 hasConceptScore W4313193082C41008148 @default.
- W4313193082 hasConceptScore W4313193082C79403827 @default.
- W4313193082 hasConceptScore W4313193082C79974875 @default.
- W4313193082 hasLocation W43131930821 @default.
- W4313193082 hasOpenAccess W4313193082 @default.
- W4313193082 hasPrimaryLocation W43131930821 @default.
- W4313193082 hasRelatedWork W183572181 @default.
- W4313193082 hasRelatedWork W2169739900 @default.
- W4313193082 hasRelatedWork W2182227208 @default.
- W4313193082 hasRelatedWork W2520630782 @default.
- W4313193082 hasRelatedWork W2583003669 @default.
- W4313193082 hasRelatedWork W3042579170 @default.
- W4313193082 hasRelatedWork W3114501693 @default.
- W4313193082 hasRelatedWork W3116229852 @default.
- W4313193082 hasRelatedWork W4301397976 @default.
- W4313193082 hasRelatedWork W4312934724 @default.
- W4313193082 isParatext "false" @default.
- W4313193082 isRetracted "false" @default.
- W4313193082 workType "book-chapter" @default.