Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313193455> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4313193455 abstract "Noise level information is crucial for many image processing tasks, such as image denoising. To estimate it, it is necessary to find homegeneous areas within the image which contain only noise. Rank-based methods have proven to be efficient to achieve such a task. In the past, we proposed a method to estimate the noise level function (NLF) of grayscale images using the tree of shapes (ToS). This method, relying on the connected components extracted from the ToS computed on the noisy image, had the advantage of being adapted to the image content, which is not the case when using square blocks, but is still restricted to grayscale images. In this paper, we extend our ToS-based method to color images. Unlike grayscale images, the pixel values in multivariate images do not have a natural order relationship, which is a well-known issue when working with mathematical morphology and rank statistics. We propose to use the multivariate ToS to retrieve homogeneous regions. We derive an order relationship for the multivariate pixel values thanks to a complete lattice learning strategy and use it to compute the rank statistics. The obtained multivariate NLF is composed of one NLF per channel. The performance of the proposed method is compared with the one obtained using square blocks, and validates the soundness of the multivariate ToS structure for this task." @default.
- W4313193455 created "2023-01-06" @default.
- W4313193455 creator A5059793245 @default.
- W4313193455 creator A5062290429 @default.
- W4313193455 creator A5087268816 @default.
- W4313193455 creator A5088928086 @default.
- W4313193455 date "2022-08-21" @default.
- W4313193455 modified "2023-09-25" @default.
- W4313193455 title "Estimation of the noise level function for color images using mathematical morphology and non-parametric statistics" @default.
- W4313193455 cites W1627595462 @default.
- W4313193455 cites W2023005931 @default.
- W4313193455 cites W2043220014 @default.
- W4313193455 cites W2075283854 @default.
- W4313193455 cites W2092663520 @default.
- W4313193455 cites W2097074225 @default.
- W4313193455 cites W2097308346 @default.
- W4313193455 cites W2099798190 @default.
- W4313193455 cites W2109853861 @default.
- W4313193455 cites W2114487471 @default.
- W4313193455 cites W2129759040 @default.
- W4313193455 cites W2134041875 @default.
- W4313193455 cites W2136396015 @default.
- W4313193455 cites W2157691228 @default.
- W4313193455 cites W2172656675 @default.
- W4313193455 cites W2227244893 @default.
- W4313193455 cites W2892054235 @default.
- W4313193455 cites W2969488913 @default.
- W4313193455 cites W2972704308 @default.
- W4313193455 cites W2990585816 @default.
- W4313193455 cites W3104725225 @default.
- W4313193455 cites W4239181501 @default.
- W4313193455 cites W4255898812 @default.
- W4313193455 doi "https://doi.org/10.1109/icpr56361.2022.9956218" @default.
- W4313193455 hasPublicationYear "2022" @default.
- W4313193455 type Work @default.
- W4313193455 citedByCount "0" @default.
- W4313193455 crossrefType "proceedings-article" @default.
- W4313193455 hasAuthorship W4313193455A5059793245 @default.
- W4313193455 hasAuthorship W4313193455A5062290429 @default.
- W4313193455 hasAuthorship W4313193455A5087268816 @default.
- W4313193455 hasAuthorship W4313193455A5088928086 @default.
- W4313193455 hasBestOaLocation W43131934552 @default.
- W4313193455 hasConcept C115961682 @default.
- W4313193455 hasConcept C119857082 @default.
- W4313193455 hasConcept C153180895 @default.
- W4313193455 hasConcept C154945302 @default.
- W4313193455 hasConcept C160633673 @default.
- W4313193455 hasConcept C161584116 @default.
- W4313193455 hasConcept C31972630 @default.
- W4313193455 hasConcept C33923547 @default.
- W4313193455 hasConcept C41008148 @default.
- W4313193455 hasConcept C78201319 @default.
- W4313193455 hasConcept C99498987 @default.
- W4313193455 hasConceptScore W4313193455C115961682 @default.
- W4313193455 hasConceptScore W4313193455C119857082 @default.
- W4313193455 hasConceptScore W4313193455C153180895 @default.
- W4313193455 hasConceptScore W4313193455C154945302 @default.
- W4313193455 hasConceptScore W4313193455C160633673 @default.
- W4313193455 hasConceptScore W4313193455C161584116 @default.
- W4313193455 hasConceptScore W4313193455C31972630 @default.
- W4313193455 hasConceptScore W4313193455C33923547 @default.
- W4313193455 hasConceptScore W4313193455C41008148 @default.
- W4313193455 hasConceptScore W4313193455C78201319 @default.
- W4313193455 hasConceptScore W4313193455C99498987 @default.
- W4313193455 hasLocation W43131934551 @default.
- W4313193455 hasLocation W43131934552 @default.
- W4313193455 hasLocation W43131934553 @default.
- W4313193455 hasOpenAccess W4313193455 @default.
- W4313193455 hasPrimaryLocation W43131934551 @default.
- W4313193455 hasRelatedWork W121273120 @default.
- W4313193455 hasRelatedWork W2038390631 @default.
- W4313193455 hasRelatedWork W2060518359 @default.
- W4313193455 hasRelatedWork W2147943677 @default.
- W4313193455 hasRelatedWork W2157071234 @default.
- W4313193455 hasRelatedWork W2337415362 @default.
- W4313193455 hasRelatedWork W2371329095 @default.
- W4313193455 hasRelatedWork W2433461236 @default.
- W4313193455 hasRelatedWork W2791049537 @default.
- W4313193455 hasRelatedWork W4312857205 @default.
- W4313193455 isParatext "false" @default.
- W4313193455 isRetracted "false" @default.
- W4313193455 workType "article" @default.