Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313196348> ?p ?o ?g. }
- W4313196348 endingPage "528" @default.
- W4313196348 startingPage "511" @default.
- W4313196348 abstract "Predicting pedestrian movement is critical for human behavior analysis and also for safe and efficient human-agent interactions. However, despite significant advancements, it is still challenging for existing approaches to capture the uncertainty and multimodality of human navigation decision making. In this paper, we propose SocialVAE, a novel approach for human trajectory prediction. The core of SocialVAE is a timewise variational autoencoder architecture that exploits stochastic recurrent neural networks to perform prediction, combined with a social attention mechanism and a backward posterior approximation to allow for better extraction of pedestrian navigation strategies. We show that SocialVAE improves current state-of-the-art performance on several pedestrian trajectory prediction benchmarks, including the ETH/UCY benchmark, Stanford Drone Dataset, and SportVU NBA movement dataset. Code is available at: https://github.com/xupei0610/SocialVAE." @default.
- W4313196348 created "2023-01-06" @default.
- W4313196348 creator A5031182577 @default.
- W4313196348 creator A5060753420 @default.
- W4313196348 creator A5063186156 @default.
- W4313196348 date "2022-01-01" @default.
- W4313196348 modified "2023-10-01" @default.
- W4313196348 title "SocialVAE: Human Trajectory Prediction Using Timewise Latents" @default.
- W4313196348 cites W1820081798 @default.
- W4313196348 cites W1888172398 @default.
- W4313196348 cites W192919555 @default.
- W4313196348 cites W1970206276 @default.
- W4313196348 cites W1981832346 @default.
- W4313196348 cites W2031040265 @default.
- W4313196348 cites W2082585576 @default.
- W4313196348 cites W2124609748 @default.
- W4313196348 cites W2146183743 @default.
- W4313196348 cites W2157331557 @default.
- W4313196348 cites W2167052694 @default.
- W4313196348 cites W2170193830 @default.
- W4313196348 cites W2309847090 @default.
- W4313196348 cites W2424778531 @default.
- W4313196348 cites W2519586580 @default.
- W4313196348 cites W2532516272 @default.
- W4313196348 cites W2766836212 @default.
- W4313196348 cites W2769282630 @default.
- W4313196348 cites W2911273949 @default.
- W4313196348 cites W2949767467 @default.
- W4313196348 cites W2962687116 @default.
- W4313196348 cites W2963001155 @default.
- W4313196348 cites W2963973018 @default.
- W4313196348 cites W2969294606 @default.
- W4313196348 cites W2985871763 @default.
- W4313196348 cites W3003235888 @default.
- W4313196348 cites W3035339264 @default.
- W4313196348 cites W3035574168 @default.
- W4313196348 cites W3097237405 @default.
- W4313196348 cites W3108908812 @default.
- W4313196348 cites W3109597949 @default.
- W4313196348 cites W3116651890 @default.
- W4313196348 cites W3127710918 @default.
- W4313196348 cites W3139491754 @default.
- W4313196348 cites W3160050461 @default.
- W4313196348 cites W3161200675 @default.
- W4313196348 cites W3193995421 @default.
- W4313196348 cites W3202525453 @default.
- W4313196348 cites W4210457203 @default.
- W4313196348 cites W4214593147 @default.
- W4313196348 cites W4312580307 @default.
- W4313196348 cites W4312750092 @default.
- W4313196348 doi "https://doi.org/10.1007/978-3-031-19772-7_30" @default.
- W4313196348 hasPublicationYear "2022" @default.
- W4313196348 type Work @default.
- W4313196348 citedByCount "4" @default.
- W4313196348 countsByYear W43131963482023 @default.
- W4313196348 crossrefType "book-chapter" @default.
- W4313196348 hasAuthorship W4313196348A5031182577 @default.
- W4313196348 hasAuthorship W4313196348A5060753420 @default.
- W4313196348 hasAuthorship W4313196348A5063186156 @default.
- W4313196348 hasBestOaLocation W43131963482 @default.
- W4313196348 hasConcept C101738243 @default.
- W4313196348 hasConcept C119857082 @default.
- W4313196348 hasConcept C121332964 @default.
- W4313196348 hasConcept C1276947 @default.
- W4313196348 hasConcept C13280743 @default.
- W4313196348 hasConcept C13662910 @default.
- W4313196348 hasConcept C154945302 @default.
- W4313196348 hasConcept C165696696 @default.
- W4313196348 hasConcept C177264268 @default.
- W4313196348 hasConcept C185798385 @default.
- W4313196348 hasConcept C199360897 @default.
- W4313196348 hasConcept C205649164 @default.
- W4313196348 hasConcept C2776760102 @default.
- W4313196348 hasConcept C38652104 @default.
- W4313196348 hasConcept C41008148 @default.
- W4313196348 hasConcept C50644808 @default.
- W4313196348 hasConceptScore W4313196348C101738243 @default.
- W4313196348 hasConceptScore W4313196348C119857082 @default.
- W4313196348 hasConceptScore W4313196348C121332964 @default.
- W4313196348 hasConceptScore W4313196348C1276947 @default.
- W4313196348 hasConceptScore W4313196348C13280743 @default.
- W4313196348 hasConceptScore W4313196348C13662910 @default.
- W4313196348 hasConceptScore W4313196348C154945302 @default.
- W4313196348 hasConceptScore W4313196348C165696696 @default.
- W4313196348 hasConceptScore W4313196348C177264268 @default.
- W4313196348 hasConceptScore W4313196348C185798385 @default.
- W4313196348 hasConceptScore W4313196348C199360897 @default.
- W4313196348 hasConceptScore W4313196348C205649164 @default.
- W4313196348 hasConceptScore W4313196348C2776760102 @default.
- W4313196348 hasConceptScore W4313196348C38652104 @default.
- W4313196348 hasConceptScore W4313196348C41008148 @default.
- W4313196348 hasConceptScore W4313196348C50644808 @default.
- W4313196348 hasLocation W43131963481 @default.
- W4313196348 hasLocation W43131963482 @default.
- W4313196348 hasOpenAccess W4313196348 @default.
- W4313196348 hasPrimaryLocation W43131963481 @default.
- W4313196348 hasRelatedWork W2788487394 @default.
- W4313196348 hasRelatedWork W2883441015 @default.