Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313197623> ?p ?o ?g. }
- W4313197623 endingPage "579" @default.
- W4313197623 startingPage "569" @default.
- W4313197623 abstract "The diagnosis of melasma is often based on the naked-eye judgment of physicians. However, this is a challenge for inexperienced physicians and non-professionals, and incorrect treatment might have serious consequences. Therefore, it is important to develop an accurate method for melasma diagnosis. The objective of this study is to develop and validate an intelligent diagnostic system based on deep learning for melasma images.A total of 8010 images in the VISIA system, comprising 4005 images of patients with melasma and 4005 images of patients without melasma, were collected for training and testing. Inspired by four high-performance structures (i.e., DenseNet, ResNet, Swin Transformer, and MobileNet), the performances of deep learning models in melasma and non-melasma binary classifiers were evaluated. Furthermore, considering that there were five modes of images for each shot in VISIA, we fused these modes via multichannel image input in different combinations to explore whether multimode images could improve network performance.The proposed network based on DenseNet121 achieved the best performance with an accuracy of 93.68% and an area under the curve (AUC) of 97.86% on the test set for the melasma classifier. The results of the Gradient-weighted Class Activation Mapping showed that it was interpretable. In further experiments, for the five modes of the VISIA system, we found the best performing mode to be BROWN SPOTS. Additionally, the combination of NORMAL, BROWN SPOTS, and UV SPOTS modes significantly improved the network performance, achieving the highest accuracy of 97.4% and AUC of 99.28%.In summary, deep learning is feasible for diagnosing melasma. The proposed network not only has excellent performance with clinical images of melasma, but can also acquire high accuracy by using multiple modes of images in VISIA." @default.
- W4313197623 created "2023-01-06" @default.
- W4313197623 creator A5007234913 @default.
- W4313197623 creator A5011372526 @default.
- W4313197623 creator A5028573330 @default.
- W4313197623 creator A5045540235 @default.
- W4313197623 creator A5057631682 @default.
- W4313197623 creator A5058148824 @default.
- W4313197623 creator A5059736135 @default.
- W4313197623 creator A5070436050 @default.
- W4313197623 creator A5071374214 @default.
- W4313197623 date "2022-12-28" @default.
- W4313197623 modified "2023-10-11" @default.
- W4313197623 title "An Intelligent Diagnostic Model for Melasma Based on Deep Learning and Multimode Image Input" @default.
- W4313197623 cites W1632584899 @default.
- W4313197623 cites W1974501348 @default.
- W4313197623 cites W1981757494 @default.
- W4313197623 cites W2014435357 @default.
- W4313197623 cites W2024787648 @default.
- W4313197623 cites W2060540686 @default.
- W4313197623 cites W2079426747 @default.
- W4313197623 cites W2779440595 @default.
- W4313197623 cites W2786147899 @default.
- W4313197623 cites W2806264589 @default.
- W4313197623 cites W2884092690 @default.
- W4313197623 cites W2903060508 @default.
- W4313197623 cites W2973685341 @default.
- W4313197623 cites W2977227907 @default.
- W4313197623 cites W2977323083 @default.
- W4313197623 cites W3001669684 @default.
- W4313197623 cites W3047040100 @default.
- W4313197623 cites W3048130459 @default.
- W4313197623 cites W3074784024 @default.
- W4313197623 cites W3092560349 @default.
- W4313197623 cites W3123437608 @default.
- W4313197623 cites W3138954266 @default.
- W4313197623 cites W3156313549 @default.
- W4313197623 cites W3193681285 @default.
- W4313197623 cites W4205278172 @default.
- W4313197623 cites W4210656829 @default.
- W4313197623 cites W4285017931 @default.
- W4313197623 cites W4285908236 @default.
- W4313197623 cites W4295923818 @default.
- W4313197623 cites W4296437452 @default.
- W4313197623 cites W4296622899 @default.
- W4313197623 cites W4296836108 @default.
- W4313197623 doi "https://doi.org/10.1007/s13555-022-00874-z" @default.
- W4313197623 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36577888" @default.
- W4313197623 hasPublicationYear "2022" @default.
- W4313197623 type Work @default.
- W4313197623 citedByCount "2" @default.
- W4313197623 countsByYear W43131976232023 @default.
- W4313197623 crossrefType "journal-article" @default.
- W4313197623 hasAuthorship W4313197623A5007234913 @default.
- W4313197623 hasAuthorship W4313197623A5011372526 @default.
- W4313197623 hasAuthorship W4313197623A5028573330 @default.
- W4313197623 hasAuthorship W4313197623A5045540235 @default.
- W4313197623 hasAuthorship W4313197623A5057631682 @default.
- W4313197623 hasAuthorship W4313197623A5058148824 @default.
- W4313197623 hasAuthorship W4313197623A5059736135 @default.
- W4313197623 hasAuthorship W4313197623A5070436050 @default.
- W4313197623 hasAuthorship W4313197623A5071374214 @default.
- W4313197623 hasBestOaLocation W43131976231 @default.
- W4313197623 hasConcept C108583219 @default.
- W4313197623 hasConcept C12267149 @default.
- W4313197623 hasConcept C153180895 @default.
- W4313197623 hasConcept C154945302 @default.
- W4313197623 hasConcept C16005928 @default.
- W4313197623 hasConcept C169903167 @default.
- W4313197623 hasConcept C2776677263 @default.
- W4313197623 hasConcept C41008148 @default.
- W4313197623 hasConcept C66905080 @default.
- W4313197623 hasConcept C71924100 @default.
- W4313197623 hasConcept C95623464 @default.
- W4313197623 hasConceptScore W4313197623C108583219 @default.
- W4313197623 hasConceptScore W4313197623C12267149 @default.
- W4313197623 hasConceptScore W4313197623C153180895 @default.
- W4313197623 hasConceptScore W4313197623C154945302 @default.
- W4313197623 hasConceptScore W4313197623C16005928 @default.
- W4313197623 hasConceptScore W4313197623C169903167 @default.
- W4313197623 hasConceptScore W4313197623C2776677263 @default.
- W4313197623 hasConceptScore W4313197623C41008148 @default.
- W4313197623 hasConceptScore W4313197623C66905080 @default.
- W4313197623 hasConceptScore W4313197623C71924100 @default.
- W4313197623 hasConceptScore W4313197623C95623464 @default.
- W4313197623 hasFunder F4320321001 @default.
- W4313197623 hasIssue "2" @default.
- W4313197623 hasLocation W43131976231 @default.
- W4313197623 hasLocation W43131976232 @default.
- W4313197623 hasLocation W43131976233 @default.
- W4313197623 hasOpenAccess W4313197623 @default.
- W4313197623 hasPrimaryLocation W43131976231 @default.
- W4313197623 hasRelatedWork W2167582322 @default.
- W4313197623 hasRelatedWork W2563096758 @default.
- W4313197623 hasRelatedWork W2738221750 @default.
- W4313197623 hasRelatedWork W2972035100 @default.
- W4313197623 hasRelatedWork W3019180786 @default.
- W4313197623 hasRelatedWork W3099765033 @default.