Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313197817> ?p ?o ?g. }
- W4313197817 endingPage "102527" @default.
- W4313197817 startingPage "102527" @default.
- W4313197817 abstract "It has been reported that a deadly virus known as COVID-19 has arisen in China and has spread rapidly throughout the country. The globe was shattered, and a large number of people on the planet died. It quickly became an epidemic due to the absence of apparent symptoms and causes for patients, confusion appears due to the lack of sufficient laboratory results, and its intelligent algorithms were used to make decisions on clinical outcomes.This study developed a new framework for medical datasets with high missing values based on deep-learning optimization models. The robustness of our model is achieved by combining: Data Missing Care (DMC) Framework to overcome the problem of high missing data in medical datasets, and Grid-Search optimization used to develop an improved deep predictive training model for patients with COVID-19 by setting multiple hyperparameters and tuning assessments on three deep learning algorithms: ANN (Artificial Neural Network), CNN (Convolutional Neural Network), and Recurrent Neural Networks (RNN).The experiment results conducted on three medical datasets showed the effectiveness of our hybrid approach and an improvement in accuracy and efficiency since all the evaluation metrics were close to ideal for all deep learning classifiers. We got the best evaluation in terms of accuracy 98%, precession 98.5%, F1-score 98.6%, and ROC Curve (95% to 99%) for the COVID-19 dataset provided by GitHub. The second dataset is also Covid-19 provided by Albert Einstein Hospital with high missing data after applying our approach the accuracy reached more than 91%. Third dataset for Cervical Cancer provided by Kaggle all the evaluation metrics reached more than 95%.The proposed formula for processing this type of data can replace the traditional formats in optimization while providing high accuracy and less time to classify patients. Whereas, the experimental results of our approach, supported by comprehensive statistical analysis, can improve the overall evaluation performance of the problem of classifying medical data sets with high missing values. Therefore, this approach can be used in many areas such as energy management, environment, and medicine." @default.
- W4313197817 created "2023-01-06" @default.
- W4313197817 creator A5023459748 @default.
- W4313197817 creator A5041047831 @default.
- W4313197817 creator A5045602249 @default.
- W4313197817 creator A5046269082 @default.
- W4313197817 creator A5048573606 @default.
- W4313197817 creator A5048652421 @default.
- W4313197817 creator A5058732184 @default.
- W4313197817 creator A5058792981 @default.
- W4313197817 date "2023-04-01" @default.
- W4313197817 modified "2023-10-14" @default.
- W4313197817 title "Multi-objective deep learning framework for COVID-19 dataset problems" @default.
- W4313197817 cites W2250178193 @default.
- W4313197817 cites W2735913953 @default.
- W4313197817 cites W2807828647 @default.
- W4313197817 cites W2807913282 @default.
- W4313197817 cites W2897977943 @default.
- W4313197817 cites W2914150517 @default.
- W4313197817 cites W2968192630 @default.
- W4313197817 cites W3035443326 @default.
- W4313197817 cites W3038780555 @default.
- W4313197817 cites W3043904603 @default.
- W4313197817 cites W3081923509 @default.
- W4313197817 cites W3088837141 @default.
- W4313197817 cites W3094330920 @default.
- W4313197817 cites W3128465983 @default.
- W4313197817 cites W3213749493 @default.
- W4313197817 cites W4200115241 @default.
- W4313197817 cites W4200550817 @default.
- W4313197817 cites W4210259910 @default.
- W4313197817 cites W4210936308 @default.
- W4313197817 cites W4221086457 @default.
- W4313197817 cites W4223535757 @default.
- W4313197817 cites W4295857246 @default.
- W4313197817 cites W4310206171 @default.
- W4313197817 doi "https://doi.org/10.1016/j.jksus.2022.102527" @default.
- W4313197817 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36590237" @default.
- W4313197817 hasPublicationYear "2023" @default.
- W4313197817 type Work @default.
- W4313197817 citedByCount "1" @default.
- W4313197817 countsByYear W43131978172023 @default.
- W4313197817 crossrefType "journal-article" @default.
- W4313197817 hasAuthorship W4313197817A5023459748 @default.
- W4313197817 hasAuthorship W4313197817A5041047831 @default.
- W4313197817 hasAuthorship W4313197817A5045602249 @default.
- W4313197817 hasAuthorship W4313197817A5046269082 @default.
- W4313197817 hasAuthorship W4313197817A5048573606 @default.
- W4313197817 hasAuthorship W4313197817A5048652421 @default.
- W4313197817 hasAuthorship W4313197817A5058732184 @default.
- W4313197817 hasAuthorship W4313197817A5058792981 @default.
- W4313197817 hasBestOaLocation W43131978171 @default.
- W4313197817 hasConcept C104317684 @default.
- W4313197817 hasConcept C10485038 @default.
- W4313197817 hasConcept C108583219 @default.
- W4313197817 hasConcept C119857082 @default.
- W4313197817 hasConcept C12267149 @default.
- W4313197817 hasConcept C124101348 @default.
- W4313197817 hasConcept C138602881 @default.
- W4313197817 hasConcept C142724271 @default.
- W4313197817 hasConcept C147168706 @default.
- W4313197817 hasConcept C148524875 @default.
- W4313197817 hasConcept C154945302 @default.
- W4313197817 hasConcept C185592680 @default.
- W4313197817 hasConcept C2779134260 @default.
- W4313197817 hasConcept C3008058167 @default.
- W4313197817 hasConcept C41008148 @default.
- W4313197817 hasConcept C50644808 @default.
- W4313197817 hasConcept C524204448 @default.
- W4313197817 hasConcept C55493867 @default.
- W4313197817 hasConcept C63479239 @default.
- W4313197817 hasConcept C71924100 @default.
- W4313197817 hasConcept C81363708 @default.
- W4313197817 hasConcept C8642999 @default.
- W4313197817 hasConcept C9357733 @default.
- W4313197817 hasConceptScore W4313197817C104317684 @default.
- W4313197817 hasConceptScore W4313197817C10485038 @default.
- W4313197817 hasConceptScore W4313197817C108583219 @default.
- W4313197817 hasConceptScore W4313197817C119857082 @default.
- W4313197817 hasConceptScore W4313197817C12267149 @default.
- W4313197817 hasConceptScore W4313197817C124101348 @default.
- W4313197817 hasConceptScore W4313197817C138602881 @default.
- W4313197817 hasConceptScore W4313197817C142724271 @default.
- W4313197817 hasConceptScore W4313197817C147168706 @default.
- W4313197817 hasConceptScore W4313197817C148524875 @default.
- W4313197817 hasConceptScore W4313197817C154945302 @default.
- W4313197817 hasConceptScore W4313197817C185592680 @default.
- W4313197817 hasConceptScore W4313197817C2779134260 @default.
- W4313197817 hasConceptScore W4313197817C3008058167 @default.
- W4313197817 hasConceptScore W4313197817C41008148 @default.
- W4313197817 hasConceptScore W4313197817C50644808 @default.
- W4313197817 hasConceptScore W4313197817C524204448 @default.
- W4313197817 hasConceptScore W4313197817C55493867 @default.
- W4313197817 hasConceptScore W4313197817C63479239 @default.
- W4313197817 hasConceptScore W4313197817C71924100 @default.
- W4313197817 hasConceptScore W4313197817C81363708 @default.
- W4313197817 hasConceptScore W4313197817C8642999 @default.
- W4313197817 hasConceptScore W4313197817C9357733 @default.