Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313200596> ?p ?o ?g. }
- W4313200596 endingPage "128958" @default.
- W4313200596 startingPage "128958" @default.
- W4313200596 abstract "The accurate quantification of lake volume is essential for regional water resources management and ecosystem health. Because of the high cost of traditional full-lake depth measurements, the bathymetric and volume information for most lakes globally is inaccessible. Whether the limited field measurements over the lake can be used to estimate lake volume is worth investigating. This study aims to propose an effective method for estimating lake mean depth/volume based on the lake deepest record. We first constructed the empirical model that relies on the linear relationship between lake maximum depth and lake mean depth/volume. The different machine learning (ML) methods were then developed and tested based on the available lake deepest record and multi-type geospatial parameters. Although the linear model shows good performance for estimating lake mean depth (R2 = 0.83), it is difficult to predict lake volume (R2 = 0.23). Most ML models perform better (R2 ≥ 0.85) than linear models. However, the support vector machines (SVM) model (SVM-3: R2 = 0.54, MAPE = 134.93 %) and deep neural network (DNN) model (DNN-3: R2 = 0.83, MAPE = 82.56 %) constructed with low influential input parameters performed poorly. In contrast, extremely gradient boosting tree (XGBoost) and random forest (RF) methods have high stability and accuracy both in predicting lake mean depth (XGBoost-1: R2 = 0.87, MAPE = 23.35 %; RF-1: R2 = 0.90, MAPE = 22.75 %) and volume (XGBoost-3: R2 = 0.99, MAPE = 31.03 %; RF-3: R2 = 0.98, MAPE = 32.63 %). The RF and XGBoost models constructed with a small amount of measured lake depth data in a different region also had a good performance. Generally, the results suggest that the XGBoost and RF methods have great potential in lake volume estimation. This research is expected to provide a feasible approach to predict lake volume and benefit lake water resources management." @default.
- W4313200596 created "2023-01-06" @default.
- W4313200596 creator A5006373875 @default.
- W4313200596 creator A5011041511 @default.
- W4313200596 creator A5048189831 @default.
- W4313200596 creator A5051363890 @default.
- W4313200596 creator A5059933283 @default.
- W4313200596 creator A5080305240 @default.
- W4313200596 creator A5087431334 @default.
- W4313200596 date "2023-02-01" @default.
- W4313200596 modified "2023-10-17" @default.
- W4313200596 title "Can we estimate the lake mean depth and volume from the deepest record and auxiliary geospatial parameters?" @default.
- W4313200596 cites W1806941881 @default.
- W4313200596 cites W1964357740 @default.
- W4313200596 cites W1976722654 @default.
- W4313200596 cites W1981975593 @default.
- W4313200596 cites W1988195734 @default.
- W4313200596 cites W1997503012 @default.
- W4313200596 cites W1998515817 @default.
- W4313200596 cites W1998953929 @default.
- W4313200596 cites W1999767337 @default.
- W4313200596 cites W2008056160 @default.
- W4313200596 cites W2008056655 @default.
- W4313200596 cites W2013301826 @default.
- W4313200596 cites W2031507317 @default.
- W4313200596 cites W2033602192 @default.
- W4313200596 cites W2038917393 @default.
- W4313200596 cites W2039853153 @default.
- W4313200596 cites W2046412660 @default.
- W4313200596 cites W2076063813 @default.
- W4313200596 cites W2078860594 @default.
- W4313200596 cites W2079929825 @default.
- W4313200596 cites W2137734568 @default.
- W4313200596 cites W2154144157 @default.
- W4313200596 cites W2163801134 @default.
- W4313200596 cites W2212592524 @default.
- W4313200596 cites W2218047931 @default.
- W4313200596 cites W2234850500 @default.
- W4313200596 cites W2265610844 @default.
- W4313200596 cites W2516357303 @default.
- W4313200596 cites W2560167313 @default.
- W4313200596 cites W2560716899 @default.
- W4313200596 cites W2564545777 @default.
- W4313200596 cites W2784776647 @default.
- W4313200596 cites W2791589913 @default.
- W4313200596 cites W2885127840 @default.
- W4313200596 cites W2889380484 @default.
- W4313200596 cites W2909053836 @default.
- W4313200596 cites W2911964244 @default.
- W4313200596 cites W2913485255 @default.
- W4313200596 cites W2913678469 @default.
- W4313200596 cites W2919115771 @default.
- W4313200596 cites W2946294538 @default.
- W4313200596 cites W2948772913 @default.
- W4313200596 cites W2954393156 @default.
- W4313200596 cites W2996235771 @default.
- W4313200596 cites W3004848621 @default.
- W4313200596 cites W3005102934 @default.
- W4313200596 cites W3009753677 @default.
- W4313200596 cites W3010069939 @default.
- W4313200596 cites W3017247426 @default.
- W4313200596 cites W3040818127 @default.
- W4313200596 cites W3043791248 @default.
- W4313200596 cites W3049063071 @default.
- W4313200596 cites W3055212543 @default.
- W4313200596 cites W3134835742 @default.
- W4313200596 cites W3188025443 @default.
- W4313200596 cites W3215806095 @default.
- W4313200596 cites W4206975869 @default.
- W4313200596 cites W4210471584 @default.
- W4313200596 cites W4213046562 @default.
- W4313200596 cites W4281630277 @default.
- W4313200596 cites W4281636111 @default.
- W4313200596 doi "https://doi.org/10.1016/j.jhydrol.2022.128958" @default.
- W4313200596 hasPublicationYear "2023" @default.
- W4313200596 type Work @default.
- W4313200596 citedByCount "3" @default.
- W4313200596 countsByYear W43132005962023 @default.
- W4313200596 crossrefType "journal-article" @default.
- W4313200596 hasAuthorship W4313200596A5006373875 @default.
- W4313200596 hasAuthorship W4313200596A5011041511 @default.
- W4313200596 hasAuthorship W4313200596A5048189831 @default.
- W4313200596 hasAuthorship W4313200596A5051363890 @default.
- W4313200596 hasAuthorship W4313200596A5059933283 @default.
- W4313200596 hasAuthorship W4313200596A5080305240 @default.
- W4313200596 hasAuthorship W4313200596A5087431334 @default.
- W4313200596 hasConcept C105795698 @default.
- W4313200596 hasConcept C109007969 @default.
- W4313200596 hasConcept C119857082 @default.
- W4313200596 hasConcept C121332964 @default.
- W4313200596 hasConcept C12267149 @default.
- W4313200596 hasConcept C127313418 @default.
- W4313200596 hasConcept C150217764 @default.
- W4313200596 hasConcept C151730666 @default.
- W4313200596 hasConcept C169258074 @default.
- W4313200596 hasConcept C187320778 @default.
- W4313200596 hasConcept C20556612 @default.
- W4313200596 hasConcept C2991991741 @default.