Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313200841> ?p ?o ?g. }
- W4313200841 endingPage "126720" @default.
- W4313200841 startingPage "126720" @default.
- W4313200841 abstract "Crop yield monitoring provides highly appreciated information by decision-makers and end-users, i.e., policymakers, insurance companies or professional farmers. Currently, the dense time series of remote sensing (RS) satellite images allow to accurately describe the spatial and temporal evolution of the canopy, providing valuable information for crop monitoring and yield estimation. In this paper, we present the basis of the integration of RS into the classical approaches for the estimation of biomass production and its partitioning. The proposed approach is based on the well-documented relationships among yield components, i.e. total aboveground biomass and harvest index, and accumulated biophysical variables (radiation absorption, transpiration and crop transpiration coefficient) estimated using widely accepted methodologies based on RS data. The model developed (MYRS: Mapping Yield Remote Sensing-based) provides a mechanistic and quantitative tool for the study of the impact of crop growth and development in the variables determining the final yield in grain crops. While the MYRS model relies on previous studies that demonstrated the feasibility of RS-based approaches to estimate the crop biomass accumulation (Campos et al., 2018a, Campos et al., 2018b) and harvest index (Campoy et al., 2020) in cereal crops, this paper described the operational implementation of these sub-models and the evaluation of the model at field and sub-field scales in commercial fields planted with wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) in Albacete, Ciudad Real, Cuenca, Córdoba and Sevilla (South of Spain). The results revealed the potential of the proposed MYRS model to capture the within and inter-field variability of yield in commercial fields under different environmental and management conditions and with limited requirements for input data. In addition, we discussed in this paper further applications of the model for the evaluation of management strategies and their application in precision agriculture." @default.
- W4313200841 created "2023-01-06" @default.
- W4313200841 creator A5005366879 @default.
- W4313200841 creator A5010888084 @default.
- W4313200841 creator A5034646327 @default.
- W4313200841 creator A5039558717 @default.
- W4313200841 creator A5055374239 @default.
- W4313200841 creator A5088350983 @default.
- W4313200841 date "2023-02-01" @default.
- W4313200841 modified "2023-09-30" @default.
- W4313200841 title "Remote Sensing-based crop yield model at field and within-field scales in wheat and barley crops" @default.
- W4313200841 cites W113448356 @default.
- W4313200841 cites W1483689959 @default.
- W4313200841 cites W1969843577 @default.
- W4313200841 cites W1972206813 @default.
- W4313200841 cites W1978514759 @default.
- W4313200841 cites W1980952351 @default.
- W4313200841 cites W1983772910 @default.
- W4313200841 cites W1984680692 @default.
- W4313200841 cites W1984818000 @default.
- W4313200841 cites W1985051775 @default.
- W4313200841 cites W1986072339 @default.
- W4313200841 cites W1989403585 @default.
- W4313200841 cites W1992023680 @default.
- W4313200841 cites W1992546862 @default.
- W4313200841 cites W1994975670 @default.
- W4313200841 cites W1998256169 @default.
- W4313200841 cites W2009080236 @default.
- W4313200841 cites W2014135727 @default.
- W4313200841 cites W2017541618 @default.
- W4313200841 cites W2019858043 @default.
- W4313200841 cites W2023336635 @default.
- W4313200841 cites W2031964859 @default.
- W4313200841 cites W2036706101 @default.
- W4313200841 cites W2040417533 @default.
- W4313200841 cites W2042167571 @default.
- W4313200841 cites W2046794721 @default.
- W4313200841 cites W2049096931 @default.
- W4313200841 cites W2051652537 @default.
- W4313200841 cites W2051898806 @default.
- W4313200841 cites W2056251274 @default.
- W4313200841 cites W2056323903 @default.
- W4313200841 cites W2067828731 @default.
- W4313200841 cites W2073119306 @default.
- W4313200841 cites W2094478602 @default.
- W4313200841 cites W2096573004 @default.
- W4313200841 cites W2114002886 @default.
- W4313200841 cites W2119706051 @default.
- W4313200841 cites W2129016866 @default.
- W4313200841 cites W2138314062 @default.
- W4313200841 cites W2151920842 @default.
- W4313200841 cites W2152997230 @default.
- W4313200841 cites W2153598078 @default.
- W4313200841 cites W2154700052 @default.
- W4313200841 cites W2190915980 @default.
- W4313200841 cites W2200121095 @default.
- W4313200841 cites W2586216468 @default.
- W4313200841 cites W2599412217 @default.
- W4313200841 cites W2613781739 @default.
- W4313200841 cites W2620888648 @default.
- W4313200841 cites W2742021796 @default.
- W4313200841 cites W2767273025 @default.
- W4313200841 cites W2769705177 @default.
- W4313200841 cites W2802057955 @default.
- W4313200841 cites W2887404863 @default.
- W4313200841 cites W2909678677 @default.
- W4313200841 cites W2936860009 @default.
- W4313200841 cites W2966744467 @default.
- W4313200841 cites W3044049431 @default.
- W4313200841 cites W3097088508 @default.
- W4313200841 cites W3161433191 @default.
- W4313200841 cites W4235338840 @default.
- W4313200841 cites W4281629943 @default.
- W4313200841 doi "https://doi.org/10.1016/j.eja.2022.126720" @default.
- W4313200841 hasPublicationYear "2023" @default.
- W4313200841 type Work @default.
- W4313200841 citedByCount "3" @default.
- W4313200841 countsByYear W43132008412023 @default.
- W4313200841 crossrefType "journal-article" @default.
- W4313200841 hasAuthorship W4313200841A5005366879 @default.
- W4313200841 hasAuthorship W4313200841A5010888084 @default.
- W4313200841 hasAuthorship W4313200841A5034646327 @default.
- W4313200841 hasAuthorship W4313200841A5039558717 @default.
- W4313200841 hasAuthorship W4313200841A5055374239 @default.
- W4313200841 hasAuthorship W4313200841A5088350983 @default.
- W4313200841 hasConcept C101000010 @default.
- W4313200841 hasConcept C115540264 @default.
- W4313200841 hasConcept C121332964 @default.
- W4313200841 hasConcept C126343540 @default.
- W4313200841 hasConcept C127413603 @default.
- W4313200841 hasConcept C134121241 @default.
- W4313200841 hasConcept C137580998 @default.
- W4313200841 hasConcept C157517311 @default.
- W4313200841 hasConcept C183688256 @default.
- W4313200841 hasConcept C18903297 @default.
- W4313200841 hasConcept C25989453 @default.
- W4313200841 hasConcept C2993665447 @default.
- W4313200841 hasConcept C39432304 @default.