Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313201089> ?p ?o ?g. }
- W4313201089 endingPage "103135" @default.
- W4313201089 startingPage "103135" @default.
- W4313201089 abstract "Predicting user future travel trajectories is crucial for transportation planning, emergency evacuation, geo-customized advertising and other city smart management. However, due to the spatiotemporal complexity of human travel behavior, accurately predicting user travel trajectory is still very challenging. Existing prediction approaches majorly focus on historical trajectory pattern mining and training model variants. However, the functional land use of user stops, which may provide valuable inputs for user current and historical travel purposes, is still rarely utilized in travel prediction. On the other hand, identifying functional land use from multispectral observations has been well-developed by urban remote sensing community in recent years. Targeting this research gap, this paper presents a geospatial artificial intelligence (GeoAI) based approach for travel location prediction by fusing multispectral observations and trajectories geocomputation (FMT model). First, user stay points are extracted from raw historical trajectories with link construction, stay point extraction and semantic location clustering. Then, high-resolution multispectral images, POIs and road networks were utilized to establish a block-level functional land use identification model for every stay point, which is utilized in the trajectories prediction model with interfered travel purpose inputs. Finally, a geospatial customized neural network model with the aforementioned prediction features integrated was implemented for trajectory prediction capabilities. The prediction performance evaluations show that a) fusing multispectral images with functional land use contributed to prediction performance gains of 9.03 %, 7.14 % and 8.69 % in prediction precision, recall and F-score respectively, b) sensitivity analysis showed that the FMT model researched over 90 % of the model prediction capabilities with 40 %+ training size and 4+ time steps in our study area, c) FMT model has 12.2 % and 7.7 % performance gain as compared with traditional conventional N-Order Markov (NM) models and the Prediction by Partial Match (PPM) models." @default.
- W4313201089 created "2023-01-06" @default.
- W4313201089 creator A5005361369 @default.
- W4313201089 creator A5034579880 @default.
- W4313201089 creator A5089035530 @default.
- W4313201089 date "2023-02-01" @default.
- W4313201089 modified "2023-09-26" @default.
- W4313201089 title "Fusing high-resolution multispectral image with trajectory for user next travel location prediction" @default.
- W4313201089 cites W111302912 @default.
- W4313201089 cites W1563419623 @default.
- W4313201089 cites W1689711448 @default.
- W4313201089 cites W1964461063 @default.
- W4313201089 cites W1966323462 @default.
- W4313201089 cites W1968428196 @default.
- W4313201089 cites W1972243012 @default.
- W4313201089 cites W1977555135 @default.
- W4313201089 cites W1982300822 @default.
- W4313201089 cites W1982397092 @default.
- W4313201089 cites W1987228002 @default.
- W4313201089 cites W2009155608 @default.
- W4313201089 cites W2015480405 @default.
- W4313201089 cites W2021674713 @default.
- W4313201089 cites W2026126282 @default.
- W4313201089 cites W2042661229 @default.
- W4313201089 cites W2056284729 @default.
- W4313201089 cites W2068504196 @default.
- W4313201089 cites W2074020083 @default.
- W4313201089 cites W21160567 @default.
- W4313201089 cites W2150379642 @default.
- W4313201089 cites W2164466012 @default.
- W4313201089 cites W2167686542 @default.
- W4313201089 cites W2171279286 @default.
- W4313201089 cites W2175477417 @default.
- W4313201089 cites W2408569144 @default.
- W4313201089 cites W2472954632 @default.
- W4313201089 cites W2539781657 @default.
- W4313201089 cites W2603341501 @default.
- W4313201089 cites W2746385800 @default.
- W4313201089 cites W2762334571 @default.
- W4313201089 cites W2791924394 @default.
- W4313201089 cites W2801561689 @default.
- W4313201089 cites W2845278725 @default.
- W4313201089 cites W2850576248 @default.
- W4313201089 cites W2905092315 @default.
- W4313201089 cites W2914669112 @default.
- W4313201089 cites W2961817299 @default.
- W4313201089 cites W2964244136 @default.
- W4313201089 cites W2979344375 @default.
- W4313201089 cites W2990979713 @default.
- W4313201089 cites W3005596500 @default.
- W4313201089 cites W3014104048 @default.
- W4313201089 cites W3038991647 @default.
- W4313201089 cites W3098791569 @default.
- W4313201089 cites W3102247173 @default.
- W4313201089 cites W3104314953 @default.
- W4313201089 cites W3138962416 @default.
- W4313201089 cites W3139491754 @default.
- W4313201089 cites W3169384342 @default.
- W4313201089 cites W3202613378 @default.
- W4313201089 cites W4237581886 @default.
- W4313201089 cites W4281488225 @default.
- W4313201089 cites W4312305613 @default.
- W4313201089 doi "https://doi.org/10.1016/j.jag.2022.103135" @default.
- W4313201089 hasPublicationYear "2023" @default.
- W4313201089 type Work @default.
- W4313201089 citedByCount "1" @default.
- W4313201089 countsByYear W43132010892023 @default.
- W4313201089 crossrefType "journal-article" @default.
- W4313201089 hasAuthorship W4313201089A5005361369 @default.
- W4313201089 hasAuthorship W4313201089A5034579880 @default.
- W4313201089 hasAuthorship W4313201089A5089035530 @default.
- W4313201089 hasBestOaLocation W43132010891 @default.
- W4313201089 hasConcept C116834253 @default.
- W4313201089 hasConcept C119857082 @default.
- W4313201089 hasConcept C121332964 @default.
- W4313201089 hasConcept C124101348 @default.
- W4313201089 hasConcept C1276947 @default.
- W4313201089 hasConcept C13662910 @default.
- W4313201089 hasConcept C138885662 @default.
- W4313201089 hasConcept C154945302 @default.
- W4313201089 hasConcept C173163844 @default.
- W4313201089 hasConcept C205649164 @default.
- W4313201089 hasConcept C2776401178 @default.
- W4313201089 hasConcept C41008148 @default.
- W4313201089 hasConcept C41895202 @default.
- W4313201089 hasConcept C59822182 @default.
- W4313201089 hasConcept C62649853 @default.
- W4313201089 hasConcept C73555534 @default.
- W4313201089 hasConcept C86803240 @default.
- W4313201089 hasConcept C9770341 @default.
- W4313201089 hasConceptScore W4313201089C116834253 @default.
- W4313201089 hasConceptScore W4313201089C119857082 @default.
- W4313201089 hasConceptScore W4313201089C121332964 @default.
- W4313201089 hasConceptScore W4313201089C124101348 @default.
- W4313201089 hasConceptScore W4313201089C1276947 @default.
- W4313201089 hasConceptScore W4313201089C13662910 @default.
- W4313201089 hasConceptScore W4313201089C138885662 @default.
- W4313201089 hasConceptScore W4313201089C154945302 @default.