Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313201311> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4313201311 endingPage "104531" @default.
- W4313201311 startingPage "104531" @default.
- W4313201311 abstract "Atrial fibrillation (AF) heart rhythm disorder is investigated under two topics: Persistent AF (PeAF) and Paroxysmal AF (PAF). Diagnosis and detection of PeAF is relatively easier than PAF and PAF generally remains unrecognized. It is observed that a significant number of studies in the literature focused on detection of AF. In this study, four different approaches are examined for AF detection. The first one is based upon spectral features obtained from windowed ECG signals. In the second approach, distances between successor R peaks are used as features. Then in the third approach, P waves are detected from the ECG signals by using R peak positions and then the model is trained by those P waves. In those three approaches a deep learning architecture with bidirectional long short-term memory (BiLSTM) network is used. Finally, in the fourth approach, a convolutional long short-term memory (CLSTM) model with convolution and LSTM layers is used for classification. The data set used in this work is obtained from 4th China Physiological Signal Challenge-2021. As the result of experimental studies, it is seen that classification approach based on spectral features provided the best training accuracy (0.9788) and classification based on P wave detection provided the best test accuracy (0.8765). This study compares PeAF and PAF detection and classification methods based on deep learning models using different approaches. BiLSTM networks being capable of reflecting time sensitive features of ECG, appeared to be superior to CNN and LSTM cascades." @default.
- W4313201311 created "2023-01-06" @default.
- W4313201311 creator A5004677276 @default.
- W4313201311 creator A5024786429 @default.
- W4313201311 date "2023-04-01" @default.
- W4313201311 modified "2023-10-05" @default.
- W4313201311 title "Atrial fibrillation classification and detection from ECG recordings" @default.
- W4313201311 cites W1992084825 @default.
- W4313201311 cites W2015242484 @default.
- W4313201311 cites W2095409369 @default.
- W4313201311 cites W2162216553 @default.
- W4313201311 cites W2169657931 @default.
- W4313201311 cites W2515241735 @default.
- W4313201311 cites W2605056515 @default.
- W4313201311 cites W2771148491 @default.
- W4313201311 cites W2794550444 @default.
- W4313201311 cites W2794819237 @default.
- W4313201311 cites W2795153139 @default.
- W4313201311 cites W2795210807 @default.
- W4313201311 cites W2795343136 @default.
- W4313201311 cites W2806293839 @default.
- W4313201311 cites W2884795774 @default.
- W4313201311 cites W2887171948 @default.
- W4313201311 cites W2938169034 @default.
- W4313201311 cites W2951567882 @default.
- W4313201311 cites W2962680400 @default.
- W4313201311 cites W2978760586 @default.
- W4313201311 cites W2994720754 @default.
- W4313201311 cites W2997578981 @default.
- W4313201311 cites W3082027710 @default.
- W4313201311 cites W3084352865 @default.
- W4313201311 cites W3096809883 @default.
- W4313201311 cites W3103220618 @default.
- W4313201311 cites W3107065464 @default.
- W4313201311 cites W3125658501 @default.
- W4313201311 cites W3133059474 @default.
- W4313201311 cites W3137070123 @default.
- W4313201311 cites W3174141373 @default.
- W4313201311 cites W3210914691 @default.
- W4313201311 cites W4283770671 @default.
- W4313201311 doi "https://doi.org/10.1016/j.bspc.2022.104531" @default.
- W4313201311 hasPublicationYear "2023" @default.
- W4313201311 type Work @default.
- W4313201311 citedByCount "3" @default.
- W4313201311 countsByYear W43132013112023 @default.
- W4313201311 crossrefType "journal-article" @default.
- W4313201311 hasAuthorship W4313201311A5004677276 @default.
- W4313201311 hasAuthorship W4313201311A5024786429 @default.
- W4313201311 hasConcept C108583219 @default.
- W4313201311 hasConcept C153180895 @default.
- W4313201311 hasConcept C154945302 @default.
- W4313201311 hasConcept C164705383 @default.
- W4313201311 hasConcept C2779161974 @default.
- W4313201311 hasConcept C28490314 @default.
- W4313201311 hasConcept C41008148 @default.
- W4313201311 hasConcept C45347329 @default.
- W4313201311 hasConcept C50644808 @default.
- W4313201311 hasConcept C71924100 @default.
- W4313201311 hasConceptScore W4313201311C108583219 @default.
- W4313201311 hasConceptScore W4313201311C153180895 @default.
- W4313201311 hasConceptScore W4313201311C154945302 @default.
- W4313201311 hasConceptScore W4313201311C164705383 @default.
- W4313201311 hasConceptScore W4313201311C2779161974 @default.
- W4313201311 hasConceptScore W4313201311C28490314 @default.
- W4313201311 hasConceptScore W4313201311C41008148 @default.
- W4313201311 hasConceptScore W4313201311C45347329 @default.
- W4313201311 hasConceptScore W4313201311C50644808 @default.
- W4313201311 hasConceptScore W4313201311C71924100 @default.
- W4313201311 hasLocation W43132013111 @default.
- W4313201311 hasOpenAccess W4313201311 @default.
- W4313201311 hasPrimaryLocation W43132013111 @default.
- W4313201311 hasRelatedWork W2731899572 @default.
- W4313201311 hasRelatedWork W2738221750 @default.
- W4313201311 hasRelatedWork W2939353110 @default.
- W4313201311 hasRelatedWork W3009238340 @default.
- W4313201311 hasRelatedWork W3215138031 @default.
- W4313201311 hasRelatedWork W4294150926 @default.
- W4313201311 hasRelatedWork W4312417841 @default.
- W4313201311 hasRelatedWork W4321369474 @default.
- W4313201311 hasRelatedWork W4327774331 @default.
- W4313201311 hasRelatedWork W4360585206 @default.
- W4313201311 hasVolume "82" @default.
- W4313201311 isParatext "false" @default.
- W4313201311 isRetracted "false" @default.
- W4313201311 workType "article" @default.