Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313201372> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4313201372 endingPage "119328" @default.
- W4313201372 startingPage "119328" @default.
- W4313201372 abstract "Real-world problems often involve the optimization of several objectives under multiple constraints. An example is the hyper-parameter tuning problem of machine learning algorithms. For example, minimizing both an estimate of the generalization error of a deep neural network and its prediction time. We may also consider, as a constraint, that the deep neural network must be implemented in a chip with an area below some size. Here, both the objectives and the constraint are black boxes, i.e., functions whose analytical expressions are unknown and are expensive to evaluate. Bayesian optimization (BO) methods have shown state-of-the-art results in these tasks. For this, they evaluate iteratively, at carefully chosen locations, the objectives and the constraints with the goal of solving the optimization problem in a small number of iterations. Nevertheless, most BO methods are sequential and perform evaluations at just one input location, at each iteration. Sometimes, however, we may evaluate several configurations in parallel. If this is the case, as when a cluster of computers is available, sequential evaluations result in a waste of resources. To avoid this, one has to choose which locations to evaluate in parallel, at each iteration. This article introduces PPESMOC, Parallel Predictive Entropy Search for Multi-objective Bayesian Optimization with Constraints, an information-based batch method for the simultaneous optimization of multiple expensive-to-evaluate black-box functions under the presence of several constraints. Iteratively, PPESMOC selects a batch of input locations at which to evaluate the black-boxes in parallel so as to maximally reduce the entropy of the Pareto set of the optimization problem. To our knowledge, this is the first information-based batch method for constrained multi-objective BO. We present empirical evidence in the form of several optimization problems that illustrate the effectiveness of PPESMOC. Moreover, we also show in several experiments the utility of the proposed method to tune the hyper-parameters of machine learning algorithms." @default.
- W4313201372 created "2023-01-06" @default.
- W4313201372 creator A5003318791 @default.
- W4313201372 creator A5070783543 @default.
- W4313201372 creator A5088343867 @default.
- W4313201372 date "2023-04-01" @default.
- W4313201372 modified "2023-10-16" @default.
- W4313201372 title "Parallel predictive entropy search for multi-objective Bayesian optimization with constraints applied to the tuning of machine learning algorithms" @default.
- W4313201372 cites W1532646843 @default.
- W4313201372 cites W2089943482 @default.
- W4313201372 cites W2134215770 @default.
- W4313201372 cites W2135864487 @default.
- W4313201372 cites W2162385899 @default.
- W4313201372 cites W2191881503 @default.
- W4313201372 cites W2192203593 @default.
- W4313201372 cites W2507981315 @default.
- W4313201372 cites W2997803469 @default.
- W4313201372 cites W3105444733 @default.
- W4313201372 doi "https://doi.org/10.1016/j.eswa.2022.119328" @default.
- W4313201372 hasPublicationYear "2023" @default.
- W4313201372 type Work @default.
- W4313201372 citedByCount "2" @default.
- W4313201372 countsByYear W43132013722023 @default.
- W4313201372 crossrefType "journal-article" @default.
- W4313201372 hasAuthorship W4313201372A5003318791 @default.
- W4313201372 hasAuthorship W4313201372A5070783543 @default.
- W4313201372 hasAuthorship W4313201372A5088343867 @default.
- W4313201372 hasConcept C106301342 @default.
- W4313201372 hasConcept C11413529 @default.
- W4313201372 hasConcept C119857082 @default.
- W4313201372 hasConcept C121332964 @default.
- W4313201372 hasConcept C126255220 @default.
- W4313201372 hasConcept C134306372 @default.
- W4313201372 hasConcept C137836250 @default.
- W4313201372 hasConcept C154945302 @default.
- W4313201372 hasConcept C177148314 @default.
- W4313201372 hasConcept C2524010 @default.
- W4313201372 hasConcept C2776036281 @default.
- W4313201372 hasConcept C2778049539 @default.
- W4313201372 hasConcept C33923547 @default.
- W4313201372 hasConcept C41008148 @default.
- W4313201372 hasConcept C50644808 @default.
- W4313201372 hasConcept C62520636 @default.
- W4313201372 hasConcept C94966114 @default.
- W4313201372 hasConceptScore W4313201372C106301342 @default.
- W4313201372 hasConceptScore W4313201372C11413529 @default.
- W4313201372 hasConceptScore W4313201372C119857082 @default.
- W4313201372 hasConceptScore W4313201372C121332964 @default.
- W4313201372 hasConceptScore W4313201372C126255220 @default.
- W4313201372 hasConceptScore W4313201372C134306372 @default.
- W4313201372 hasConceptScore W4313201372C137836250 @default.
- W4313201372 hasConceptScore W4313201372C154945302 @default.
- W4313201372 hasConceptScore W4313201372C177148314 @default.
- W4313201372 hasConceptScore W4313201372C2524010 @default.
- W4313201372 hasConceptScore W4313201372C2776036281 @default.
- W4313201372 hasConceptScore W4313201372C2778049539 @default.
- W4313201372 hasConceptScore W4313201372C33923547 @default.
- W4313201372 hasConceptScore W4313201372C41008148 @default.
- W4313201372 hasConceptScore W4313201372C50644808 @default.
- W4313201372 hasConceptScore W4313201372C62520636 @default.
- W4313201372 hasConceptScore W4313201372C94966114 @default.
- W4313201372 hasLocation W43132013721 @default.
- W4313201372 hasOpenAccess W4313201372 @default.
- W4313201372 hasPrimaryLocation W43132013721 @default.
- W4313201372 hasRelatedWork W2348178702 @default.
- W4313201372 hasRelatedWork W3155731460 @default.
- W4313201372 hasRelatedWork W3168731402 @default.
- W4313201372 hasRelatedWork W3188540459 @default.
- W4313201372 hasRelatedWork W3198858656 @default.
- W4313201372 hasRelatedWork W3199608561 @default.
- W4313201372 hasRelatedWork W3214139057 @default.
- W4313201372 hasRelatedWork W4322750901 @default.
- W4313201372 hasRelatedWork W4381283837 @default.
- W4313201372 hasRelatedWork W4385730426 @default.
- W4313201372 hasVolume "215" @default.
- W4313201372 isParatext "false" @default.
- W4313201372 isRetracted "false" @default.
- W4313201372 workType "article" @default.