Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313201448> ?p ?o ?g. }
- W4313201448 endingPage "104662" @default.
- W4313201448 startingPage "104662" @default.
- W4313201448 abstract "Given the ecological, cultural and psychological functions of urban vegetation, a growing number of studies have focused on daily accessible greenery visibility. Mobile laser scanning (MLS) can rapidly obtain dense point clouds that can be used to extract vegetation. To address this issue, we propose a novel method for calculating the green view index (GVI) based on MLS three-dimensional (3D) point clouds. In our study, the GVI was specified as the ratio of greenery viewing angles to the total number of viewing angles in view. The GVI calculation procedure was as follows. First, the vegetation points were extracted using the density-based spatial clustering of applications with noise (DBSCAN) algorithm and the PointNet++ deep learning algorithm. Second, based on the GVI specification, a virtual camera was constructed in a 3D point scenario to estimate greenery viewing angles in view and generate depth images, and then, the GVI value was calculated. This method is flexible and can be used to calculate the GVI at any site with any direction where 3D point scene data are available, and thus, it is suitable for evaluating various types of urban greenery. We conducted a case human-centered assessment of road greenery in a partial area of Jinshan District in Fuzhou, China, based on MLS point clouds, evaluating visible greenery and analyzing the relations among the GVI, greening pattern, and road green belt mode. The results showed that the overall visible greenery in the study area was good and that the GVI value of most road sections was more than 15 %. The method has potential for urban green space planning and management." @default.
- W4313201448 created "2023-01-06" @default.
- W4313201448 creator A5026107219 @default.
- W4313201448 creator A5049870254 @default.
- W4313201448 creator A5058572669 @default.
- W4313201448 creator A5060050761 @default.
- W4313201448 creator A5073111338 @default.
- W4313201448 creator A5088905305 @default.
- W4313201448 date "2023-04-01" @default.
- W4313201448 modified "2023-10-17" @default.
- W4313201448 title "Assessing the visibility of urban greenery using MLS LiDAR data" @default.
- W4313201448 cites W1992508336 @default.
- W4313201448 cites W2038769770 @default.
- W4313201448 cites W2041330605 @default.
- W4313201448 cites W2054696747 @default.
- W4313201448 cites W2068241800 @default.
- W4313201448 cites W2077506631 @default.
- W4313201448 cites W2095375472 @default.
- W4313201448 cites W2207292751 @default.
- W4313201448 cites W2343763659 @default.
- W4313201448 cites W2473793308 @default.
- W4313201448 cites W2548216375 @default.
- W4313201448 cites W2555513404 @default.
- W4313201448 cites W2588172417 @default.
- W4313201448 cites W2705625299 @default.
- W4313201448 cites W2751293097 @default.
- W4313201448 cites W2794191739 @default.
- W4313201448 cites W2810434396 @default.
- W4313201448 cites W2811383411 @default.
- W4313201448 cites W2885349604 @default.
- W4313201448 cites W2893280452 @default.
- W4313201448 cites W2904633726 @default.
- W4313201448 cites W2910585180 @default.
- W4313201448 cites W2963706542 @default.
- W4313201448 cites W2964257316 @default.
- W4313201448 cites W3006391673 @default.
- W4313201448 cites W3023744901 @default.
- W4313201448 cites W3092250696 @default.
- W4313201448 cites W3111162808 @default.
- W4313201448 cites W3124216104 @default.
- W4313201448 cites W3143836099 @default.
- W4313201448 cites W3153907075 @default.
- W4313201448 cites W3157178271 @default.
- W4313201448 cites W3163700646 @default.
- W4313201448 cites W3180835887 @default.
- W4313201448 cites W3196343189 @default.
- W4313201448 cites W3197709829 @default.
- W4313201448 cites W3207976166 @default.
- W4313201448 cites W4281945389 @default.
- W4313201448 cites W4282823228 @default.
- W4313201448 cites W631895740 @default.
- W4313201448 doi "https://doi.org/10.1016/j.landurbplan.2022.104662" @default.
- W4313201448 hasPublicationYear "2023" @default.
- W4313201448 type Work @default.
- W4313201448 citedByCount "1" @default.
- W4313201448 countsByYear W43132014482023 @default.
- W4313201448 crossrefType "journal-article" @default.
- W4313201448 hasAuthorship W4313201448A5026107219 @default.
- W4313201448 hasAuthorship W4313201448A5049870254 @default.
- W4313201448 hasAuthorship W4313201448A5058572669 @default.
- W4313201448 hasAuthorship W4313201448A5060050761 @default.
- W4313201448 hasAuthorship W4313201448A5073111338 @default.
- W4313201448 hasAuthorship W4313201448A5088905305 @default.
- W4313201448 hasConcept C104047586 @default.
- W4313201448 hasConcept C120665830 @default.
- W4313201448 hasConcept C121332964 @default.
- W4313201448 hasConcept C123403432 @default.
- W4313201448 hasConcept C131979681 @default.
- W4313201448 hasConcept C141349535 @default.
- W4313201448 hasConcept C142724271 @default.
- W4313201448 hasConcept C150140777 @default.
- W4313201448 hasConcept C153294291 @default.
- W4313201448 hasConcept C154945302 @default.
- W4313201448 hasConcept C17212007 @default.
- W4313201448 hasConcept C205649164 @default.
- W4313201448 hasConcept C2776133958 @default.
- W4313201448 hasConcept C31972630 @default.
- W4313201448 hasConcept C41008148 @default.
- W4313201448 hasConcept C46576248 @default.
- W4313201448 hasConcept C51399673 @default.
- W4313201448 hasConcept C520434653 @default.
- W4313201448 hasConcept C62649853 @default.
- W4313201448 hasConcept C71924100 @default.
- W4313201448 hasConcept C73555534 @default.
- W4313201448 hasConceptScore W4313201448C104047586 @default.
- W4313201448 hasConceptScore W4313201448C120665830 @default.
- W4313201448 hasConceptScore W4313201448C121332964 @default.
- W4313201448 hasConceptScore W4313201448C123403432 @default.
- W4313201448 hasConceptScore W4313201448C131979681 @default.
- W4313201448 hasConceptScore W4313201448C141349535 @default.
- W4313201448 hasConceptScore W4313201448C142724271 @default.
- W4313201448 hasConceptScore W4313201448C150140777 @default.
- W4313201448 hasConceptScore W4313201448C153294291 @default.
- W4313201448 hasConceptScore W4313201448C154945302 @default.
- W4313201448 hasConceptScore W4313201448C17212007 @default.
- W4313201448 hasConceptScore W4313201448C205649164 @default.
- W4313201448 hasConceptScore W4313201448C2776133958 @default.
- W4313201448 hasConceptScore W4313201448C31972630 @default.