Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313201622> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4313201622 endingPage "566" @default.
- W4313201622 startingPage "555" @default.
- W4313201622 abstract "The 6th generation (6G) network targets the Internet of Everything (IoE) implementation, and Distributed Deep Learning (DDL) can promote this progress with innovative performance in generating intelligence. Meanwhile, the 6G networks support ultra-reliable and low-latency communication (uRLLC) and thus can further elevate the DDL performance to empower the IoE development. However, DDL designs mostly focus on individual areas and yield separate intelligence which is insufficient for the IoE; besides, DDL platforms are usually managed in the centralized fashion, which is vulnerable for data preservation and task execution; the complexity of 6G networks involving heterogeneous devices and relations aggravates issues about reliability and efficiency of DDL. To this end, we propose a novel BC-escorted 6G-based DDL design for trustworthy model training. In this system, the 6G network design is utilized for system-wide uRLLC; non-homogeneous edge devices are grouped up with weighted consideration for DDL to train CNN models; macro base stations (MBSs) and small base stations (SBSs) jointly provide two-tiers parameter aggregation to elevate the knowledge level; a dual-driven BC consensus is designed to verify tasks and models; users anyplace can retrieve models via the BC nodes for object detection. The proposed design is evaluated in comparison with Cloud-based and P2P-based DDLs, and the results demonstrate better performance on accuracy and latency achieved in the proposed system." @default.
- W4313201622 created "2023-01-06" @default.
- W4313201622 creator A5001966447 @default.
- W4313201622 creator A5024789143 @default.
- W4313201622 creator A5027390010 @default.
- W4313201622 creator A5033884558 @default.
- W4313201622 creator A5035349369 @default.
- W4313201622 creator A5070962258 @default.
- W4313201622 creator A5086072503 @default.
- W4313201622 date "2023-04-01" @default.
- W4313201622 modified "2023-10-17" @default.
- W4313201622 title "Blockchain-escorted distributed deep learning with collaborative model aggregation towards 6G networks" @default.
- W4313201622 cites W2173213060 @default.
- W4313201622 cites W2197538184 @default.
- W4313201622 cites W2294710185 @default.
- W4313201622 cites W2802340657 @default.
- W4313201622 cites W2963067739 @default.
- W4313201622 cites W2963376758 @default.
- W4313201622 cites W2981096252 @default.
- W4313201622 cites W3001821835 @default.
- W4313201622 cites W3011830499 @default.
- W4313201622 cites W3040922689 @default.
- W4313201622 cites W3043953517 @default.
- W4313201622 cites W3107284796 @default.
- W4313201622 cites W3112680140 @default.
- W4313201622 cites W3113978062 @default.
- W4313201622 cites W3142317727 @default.
- W4313201622 cites W3184720574 @default.
- W4313201622 cites W4213341067 @default.
- W4313201622 cites W4220863835 @default.
- W4313201622 cites W4226263557 @default.
- W4313201622 cites W4226499103 @default.
- W4313201622 doi "https://doi.org/10.1016/j.future.2022.11.029" @default.
- W4313201622 hasPublicationYear "2023" @default.
- W4313201622 type Work @default.
- W4313201622 citedByCount "2" @default.
- W4313201622 countsByYear W43132016222023 @default.
- W4313201622 crossrefType "journal-article" @default.
- W4313201622 hasAuthorship W4313201622A5001966447 @default.
- W4313201622 hasAuthorship W4313201622A5024789143 @default.
- W4313201622 hasAuthorship W4313201622A5027390010 @default.
- W4313201622 hasAuthorship W4313201622A5033884558 @default.
- W4313201622 hasAuthorship W4313201622A5035349369 @default.
- W4313201622 hasAuthorship W4313201622A5070962258 @default.
- W4313201622 hasAuthorship W4313201622A5086072503 @default.
- W4313201622 hasConcept C108583219 @default.
- W4313201622 hasConcept C110875604 @default.
- W4313201622 hasConcept C111919701 @default.
- W4313201622 hasConcept C120314980 @default.
- W4313201622 hasConcept C154945302 @default.
- W4313201622 hasConcept C31258907 @default.
- W4313201622 hasConcept C41008148 @default.
- W4313201622 hasConcept C76155785 @default.
- W4313201622 hasConcept C79974875 @default.
- W4313201622 hasConcept C82876162 @default.
- W4313201622 hasConceptScore W4313201622C108583219 @default.
- W4313201622 hasConceptScore W4313201622C110875604 @default.
- W4313201622 hasConceptScore W4313201622C111919701 @default.
- W4313201622 hasConceptScore W4313201622C120314980 @default.
- W4313201622 hasConceptScore W4313201622C154945302 @default.
- W4313201622 hasConceptScore W4313201622C31258907 @default.
- W4313201622 hasConceptScore W4313201622C41008148 @default.
- W4313201622 hasConceptScore W4313201622C76155785 @default.
- W4313201622 hasConceptScore W4313201622C79974875 @default.
- W4313201622 hasConceptScore W4313201622C82876162 @default.
- W4313201622 hasLocation W43132016221 @default.
- W4313201622 hasOpenAccess W4313201622 @default.
- W4313201622 hasPrimaryLocation W43132016221 @default.
- W4313201622 hasRelatedWork W2130966263 @default.
- W4313201622 hasRelatedWork W2298102683 @default.
- W4313201622 hasRelatedWork W2383532021 @default.
- W4313201622 hasRelatedWork W2731899572 @default.
- W4313201622 hasRelatedWork W2939353110 @default.
- W4313201622 hasRelatedWork W3009238340 @default.
- W4313201622 hasRelatedWork W3215138031 @default.
- W4313201622 hasRelatedWork W4321369474 @default.
- W4313201622 hasRelatedWork W4360585206 @default.
- W4313201622 hasRelatedWork W2779562428 @default.
- W4313201622 hasVolume "141" @default.
- W4313201622 isParatext "false" @default.
- W4313201622 isRetracted "false" @default.
- W4313201622 workType "article" @default.