Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313201633> ?p ?o ?g. }
- W4313201633 endingPage "103158" @default.
- W4313201633 startingPage "103158" @default.
- W4313201633 abstract "The increase in the spread of invasive plant species (IPS) causes major disturbances to ecosystem functions. Monitoring systems are considered necessary to implement effective measures against their spread. We created species distribution models that identify the potentially suitable habitat under present and future climatic conditions for 46 IPS in Germany and incorporated habitat types obtained through remote sensing methods to assess their influence on habitat suitability. We included 18 environmental variables that describe habitat characteristics, including soil type, altitude, land use, transport infrastructure, temperature and precipitation. Models were based on two machine learning techniques: Support Vector Machines (SVM) and Boosted Regression Trees (BRT). SVM classification of Natura2000 habitat types using MODIS reflectance data was included to provide a vegetation type-based approach to interspecific competition. We integrated predicted climate variables to determine changes in habitat suitability for two forecast periods (2041–2060 and 2061–2080) and three Representative Concentration Pathways. Averaging over all species, the models showed good predictive power, with the quality of BRT (AUC 0.861; RMSE 0.225) surpassing that of SVM (AUC 0.804; RMSE 0.285). We observe that the majority of the species have not yet filled their potentially suitable habitat. An increase in habitat suitability for predicted climatic conditions is implied for most species. Our results indicate that the dynamics of biological invasions will intensify with anticipated climatic changes. Climate factors, soil type and transport infrastructure are of great relevance for the distribution of IPS, while interspecific competition, indirectly assessed through the distribution of habitat types, is only relevant for some species." @default.
- W4313201633 created "2023-01-06" @default.
- W4313201633 creator A5017977077 @default.
- W4313201633 creator A5076904122 @default.
- W4313201633 creator A5088203630 @default.
- W4313201633 date "2023-02-01" @default.
- W4313201633 modified "2023-10-17" @default.
- W4313201633 title "Which factors determine the invasion of plant species? Machine learning based habitat modelling integrating environmental factors and climate scenarios" @default.
- W4313201633 cites W1755354073 @default.
- W4313201633 cites W1919815506 @default.
- W4313201633 cites W1963513668 @default.
- W4313201633 cites W1964357740 @default.
- W4313201633 cites W1966634897 @default.
- W4313201633 cites W1979963867 @default.
- W4313201633 cites W2015385415 @default.
- W4313201633 cites W2022423925 @default.
- W4313201633 cites W2023188233 @default.
- W4313201633 cites W2025992337 @default.
- W4313201633 cites W2056868695 @default.
- W4313201633 cites W2061046949 @default.
- W4313201633 cites W2063907334 @default.
- W4313201633 cites W2067865256 @default.
- W4313201633 cites W2074074333 @default.
- W4313201633 cites W2095766166 @default.
- W4313201633 cites W2099736046 @default.
- W4313201633 cites W2112315008 @default.
- W4313201633 cites W2114983539 @default.
- W4313201633 cites W2120160157 @default.
- W4313201633 cites W2124286013 @default.
- W4313201633 cites W2124500508 @default.
- W4313201633 cites W2124706543 @default.
- W4313201633 cites W2126703278 @default.
- W4313201633 cites W2130093172 @default.
- W4313201633 cites W2133441686 @default.
- W4313201633 cites W2135695572 @default.
- W4313201633 cites W2136251662 @default.
- W4313201633 cites W2139080642 @default.
- W4313201633 cites W2141070863 @default.
- W4313201633 cites W2141713151 @default.
- W4313201633 cites W2150591409 @default.
- W4313201633 cites W2151615516 @default.
- W4313201633 cites W2152831654 @default.
- W4313201633 cites W2158585626 @default.
- W4313201633 cites W2163816695 @default.
- W4313201633 cites W2171073877 @default.
- W4313201633 cites W2235433383 @default.
- W4313201633 cites W2481089865 @default.
- W4313201633 cites W2525060195 @default.
- W4313201633 cites W2551404125 @default.
- W4313201633 cites W2601602307 @default.
- W4313201633 cites W2742119399 @default.
- W4313201633 cites W2768025983 @default.
- W4313201633 cites W3016369278 @default.
- W4313201633 cites W3029998894 @default.
- W4313201633 cites W3104895181 @default.
- W4313201633 cites W4211175631 @default.
- W4313201633 doi "https://doi.org/10.1016/j.jag.2022.103158" @default.
- W4313201633 hasPublicationYear "2023" @default.
- W4313201633 type Work @default.
- W4313201633 citedByCount "1" @default.
- W4313201633 countsByYear W43132016332023 @default.
- W4313201633 crossrefType "journal-article" @default.
- W4313201633 hasAuthorship W4313201633A5017977077 @default.
- W4313201633 hasAuthorship W4313201633A5076904122 @default.
- W4313201633 hasAuthorship W4313201633A5088203630 @default.
- W4313201633 hasBestOaLocation W43132016331 @default.
- W4313201633 hasConcept C107054158 @default.
- W4313201633 hasConcept C119857082 @default.
- W4313201633 hasConcept C12267149 @default.
- W4313201633 hasConcept C132124917 @default.
- W4313201633 hasConcept C132651083 @default.
- W4313201633 hasConcept C142724271 @default.
- W4313201633 hasConcept C153294291 @default.
- W4313201633 hasConcept C185933670 @default.
- W4313201633 hasConcept C18903297 @default.
- W4313201633 hasConcept C205649164 @default.
- W4313201633 hasConcept C2776133958 @default.
- W4313201633 hasConcept C39432304 @default.
- W4313201633 hasConcept C41008148 @default.
- W4313201633 hasConcept C63644423 @default.
- W4313201633 hasConcept C71924100 @default.
- W4313201633 hasConcept C86803240 @default.
- W4313201633 hasConcept C91306197 @default.
- W4313201633 hasConceptScore W4313201633C107054158 @default.
- W4313201633 hasConceptScore W4313201633C119857082 @default.
- W4313201633 hasConceptScore W4313201633C12267149 @default.
- W4313201633 hasConceptScore W4313201633C132124917 @default.
- W4313201633 hasConceptScore W4313201633C132651083 @default.
- W4313201633 hasConceptScore W4313201633C142724271 @default.
- W4313201633 hasConceptScore W4313201633C153294291 @default.
- W4313201633 hasConceptScore W4313201633C185933670 @default.
- W4313201633 hasConceptScore W4313201633C18903297 @default.
- W4313201633 hasConceptScore W4313201633C205649164 @default.
- W4313201633 hasConceptScore W4313201633C2776133958 @default.
- W4313201633 hasConceptScore W4313201633C39432304 @default.
- W4313201633 hasConceptScore W4313201633C41008148 @default.
- W4313201633 hasConceptScore W4313201633C63644423 @default.
- W4313201633 hasConceptScore W4313201633C71924100 @default.