Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313201691> ?p ?o ?g. }
- W4313201691 endingPage "105613" @default.
- W4313201691 startingPage "105613" @default.
- W4313201691 abstract "Watershed delineation is one of the fundamental tasks in hydrological studies. Tools for extracting watersheds from digital elevation models and flow direction rasters are commonly implemented in GIS software packages. However, the performance of available techniques and algorithms often turns out to be far from sufficient, especially when working with large datasets. While modern hardware offers high computing performance through massive parallelism, there is still a need for algorithms that can effectively use these capabilities. This paper proposes an algorithm for rapid watershed delineation directly from flow direction rasters, using the possibilities offered by modern GPU devices. Performance measurements show a significant reduction in execution time compared to other parallel solutions proposed for this task in the literature. Moreover, this implementation makes it possible to delineate multiple watersheds from the same dataset simultaneously, each having one or more outlet cells, with virtually no additional computational cost." @default.
- W4313201691 created "2023-01-06" @default.
- W4313201691 creator A5090943227 @default.
- W4313201691 date "2023-02-01" @default.
- W4313201691 modified "2023-10-16" @default.
- W4313201691 title "High-performance watershed delineation algorithm for GPU using CUDA and OpenMP" @default.
- W4313201691 cites W1529043441 @default.
- W4313201691 cites W1743582711 @default.
- W4313201691 cites W1918650041 @default.
- W4313201691 cites W1967810725 @default.
- W4313201691 cites W1971156863 @default.
- W4313201691 cites W1975619117 @default.
- W4313201691 cites W1982177207 @default.
- W4313201691 cites W1993362934 @default.
- W4313201691 cites W1996317411 @default.
- W4313201691 cites W2034564799 @default.
- W4313201691 cites W2045833579 @default.
- W4313201691 cites W2047063304 @default.
- W4313201691 cites W2053458572 @default.
- W4313201691 cites W2060856119 @default.
- W4313201691 cites W2065445104 @default.
- W4313201691 cites W2069771634 @default.
- W4313201691 cites W2078383009 @default.
- W4313201691 cites W2087536601 @default.
- W4313201691 cites W2087884757 @default.
- W4313201691 cites W2094887943 @default.
- W4313201691 cites W2095413159 @default.
- W4313201691 cites W2119534769 @default.
- W4313201691 cites W2122492390 @default.
- W4313201691 cites W2130276236 @default.
- W4313201691 cites W2149434760 @default.
- W4313201691 cites W2153978805 @default.
- W4313201691 cites W2167507651 @default.
- W4313201691 cites W2170801163 @default.
- W4313201691 cites W2174179765 @default.
- W4313201691 cites W2237870486 @default.
- W4313201691 cites W2263920657 @default.
- W4313201691 cites W2275504970 @default.
- W4313201691 cites W2313908765 @default.
- W4313201691 cites W2508809694 @default.
- W4313201691 cites W2519890389 @default.
- W4313201691 cites W2781429093 @default.
- W4313201691 cites W2805544551 @default.
- W4313201691 cites W2889260300 @default.
- W4313201691 cites W2896790556 @default.
- W4313201691 cites W2902699087 @default.
- W4313201691 cites W2910899899 @default.
- W4313201691 cites W2971333097 @default.
- W4313201691 cites W2975019326 @default.
- W4313201691 cites W3012733398 @default.
- W4313201691 cites W3086011501 @default.
- W4313201691 cites W3134511637 @default.
- W4313201691 cites W3215569762 @default.
- W4313201691 cites W4224924208 @default.
- W4313201691 cites W1965492006 @default.
- W4313201691 doi "https://doi.org/10.1016/j.envsoft.2022.105613" @default.
- W4313201691 hasPublicationYear "2023" @default.
- W4313201691 type Work @default.
- W4313201691 citedByCount "1" @default.
- W4313201691 countsByYear W43132016912023 @default.
- W4313201691 crossrefType "journal-article" @default.
- W4313201691 hasAuthorship W4313201691A5090943227 @default.
- W4313201691 hasConcept C111919701 @default.
- W4313201691 hasConcept C113775141 @default.
- W4313201691 hasConcept C11413529 @default.
- W4313201691 hasConcept C119857082 @default.
- W4313201691 hasConcept C121684516 @default.
- W4313201691 hasConcept C150547873 @default.
- W4313201691 hasConcept C162324750 @default.
- W4313201691 hasConcept C173608175 @default.
- W4313201691 hasConcept C187736073 @default.
- W4313201691 hasConcept C21442007 @default.
- W4313201691 hasConcept C2777904410 @default.
- W4313201691 hasConcept C2778119891 @default.
- W4313201691 hasConcept C2780451532 @default.
- W4313201691 hasConcept C2781172179 @default.
- W4313201691 hasConcept C41008148 @default.
- W4313201691 hasConcept C50630238 @default.
- W4313201691 hasConcept C68339613 @default.
- W4313201691 hasConcept C83283714 @default.
- W4313201691 hasConceptScore W4313201691C111919701 @default.
- W4313201691 hasConceptScore W4313201691C113775141 @default.
- W4313201691 hasConceptScore W4313201691C11413529 @default.
- W4313201691 hasConceptScore W4313201691C119857082 @default.
- W4313201691 hasConceptScore W4313201691C121684516 @default.
- W4313201691 hasConceptScore W4313201691C150547873 @default.
- W4313201691 hasConceptScore W4313201691C162324750 @default.
- W4313201691 hasConceptScore W4313201691C173608175 @default.
- W4313201691 hasConceptScore W4313201691C187736073 @default.
- W4313201691 hasConceptScore W4313201691C21442007 @default.
- W4313201691 hasConceptScore W4313201691C2777904410 @default.
- W4313201691 hasConceptScore W4313201691C2778119891 @default.
- W4313201691 hasConceptScore W4313201691C2780451532 @default.
- W4313201691 hasConceptScore W4313201691C2781172179 @default.
- W4313201691 hasConceptScore W4313201691C41008148 @default.
- W4313201691 hasConceptScore W4313201691C50630238 @default.
- W4313201691 hasConceptScore W4313201691C68339613 @default.
- W4313201691 hasConceptScore W4313201691C83283714 @default.