Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313201715> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4313201715 endingPage "104528" @default.
- W4313201715 startingPage "104528" @default.
- W4313201715 abstract "Accurate segmentation of lung nodules is crucial for subsequent pathological analysis and diagnosis. However, precise segmentation is difficult due to their complex morphological features and visual characteristics similar to surrounding tissues. The lung nodule segmentation model based on a convolutional neural network focuses on extracting local features but ignores global features. Meanwhile, the shallow layer of the encoder-decoder structure is rich in spatial information but lacks semantic information, and the deep layer has rich semantic information but lacks spatial information. This paper innovatively proposes a Cross-Transformer module and a Bidirectional Pyramid module to effectively ameliorate the above two defects. The former combines the Transformer's internal and external self-attention to alleviate the limitations of convolution operations and enhance the ability of the Transformer to extract global features. The latter adds bidirectional channels to the feature pyramid to increase the interaction of feature information between the shallow and deep layers of the model, reducing the differences in features at different stages of the model. Extensive experiments of lung nodule segmentation performed on the LIDC-IDRI dataset have shown that the highest Dice Similarity Coefficient is 91.68, the highest Sensitivity is 92.24, and the comprehensive performance has surpassed UTNet. The model proposed in this paper has superior performance for the segmentation of lung nodules and can further analyze the shape, size, and other characteristics of lung nodules, which is of great clinical significance and application value to physicians in the early diagnosis of lung nodules." @default.
- W4313201715 created "2023-01-06" @default.
- W4313201715 creator A5026893809 @default.
- W4313201715 creator A5028103428 @default.
- W4313201715 creator A5044361882 @default.
- W4313201715 creator A5076061779 @default.
- W4313201715 creator A5091192043 @default.
- W4313201715 date "2023-04-01" @default.
- W4313201715 modified "2023-10-16" @default.
- W4313201715 title "CTBP-Net: Lung nodule segmentation model based on the cross-transformer and bidirectional pyramid" @default.
- W4313201715 cites W2526855650 @default.
- W4313201715 cites W2565639579 @default.
- W4313201715 cites W2607267653 @default.
- W4313201715 cites W2899136361 @default.
- W4313201715 cites W2914272101 @default.
- W4313201715 cites W2928133111 @default.
- W4313201715 cites W2941706909 @default.
- W4313201715 cites W2962731543 @default.
- W4313201715 cites W2963857746 @default.
- W4313201715 cites W2975620172 @default.
- W4313201715 cites W2984294507 @default.
- W4313201715 cites W2998623274 @default.
- W4313201715 cites W3015788359 @default.
- W4313201715 cites W3034307881 @default.
- W4313201715 cites W3034971973 @default.
- W4313201715 cites W3092338402 @default.
- W4313201715 cites W3128999341 @default.
- W4313201715 cites W3134988755 @default.
- W4313201715 cites W3170841864 @default.
- W4313201715 cites W3175630421 @default.
- W4313201715 cites W3197957534 @default.
- W4313201715 cites W3204650100 @default.
- W4313201715 cites W3211139602 @default.
- W4313201715 doi "https://doi.org/10.1016/j.bspc.2022.104528" @default.
- W4313201715 hasPublicationYear "2023" @default.
- W4313201715 type Work @default.
- W4313201715 citedByCount "2" @default.
- W4313201715 countsByYear W43132017152023 @default.
- W4313201715 crossrefType "journal-article" @default.
- W4313201715 hasAuthorship W4313201715A5026893809 @default.
- W4313201715 hasAuthorship W4313201715A5028103428 @default.
- W4313201715 hasAuthorship W4313201715A5044361882 @default.
- W4313201715 hasAuthorship W4313201715A5076061779 @default.
- W4313201715 hasAuthorship W4313201715A5091192043 @default.
- W4313201715 hasConcept C111919701 @default.
- W4313201715 hasConcept C118505674 @default.
- W4313201715 hasConcept C121332964 @default.
- W4313201715 hasConcept C142575187 @default.
- W4313201715 hasConcept C153180895 @default.
- W4313201715 hasConcept C154945302 @default.
- W4313201715 hasConcept C165801399 @default.
- W4313201715 hasConcept C2524010 @default.
- W4313201715 hasConcept C31972630 @default.
- W4313201715 hasConcept C33923547 @default.
- W4313201715 hasConcept C41008148 @default.
- W4313201715 hasConcept C62520636 @default.
- W4313201715 hasConcept C66322947 @default.
- W4313201715 hasConcept C81363708 @default.
- W4313201715 hasConcept C89600930 @default.
- W4313201715 hasConceptScore W4313201715C111919701 @default.
- W4313201715 hasConceptScore W4313201715C118505674 @default.
- W4313201715 hasConceptScore W4313201715C121332964 @default.
- W4313201715 hasConceptScore W4313201715C142575187 @default.
- W4313201715 hasConceptScore W4313201715C153180895 @default.
- W4313201715 hasConceptScore W4313201715C154945302 @default.
- W4313201715 hasConceptScore W4313201715C165801399 @default.
- W4313201715 hasConceptScore W4313201715C2524010 @default.
- W4313201715 hasConceptScore W4313201715C31972630 @default.
- W4313201715 hasConceptScore W4313201715C33923547 @default.
- W4313201715 hasConceptScore W4313201715C41008148 @default.
- W4313201715 hasConceptScore W4313201715C62520636 @default.
- W4313201715 hasConceptScore W4313201715C66322947 @default.
- W4313201715 hasConceptScore W4313201715C81363708 @default.
- W4313201715 hasConceptScore W4313201715C89600930 @default.
- W4313201715 hasLocation W43132017151 @default.
- W4313201715 hasOpenAccess W4313201715 @default.
- W4313201715 hasPrimaryLocation W43132017151 @default.
- W4313201715 hasRelatedWork W2142795561 @default.
- W4313201715 hasRelatedWork W2379948177 @default.
- W4313201715 hasRelatedWork W2384362569 @default.
- W4313201715 hasRelatedWork W4205302943 @default.
- W4313201715 hasRelatedWork W4249847449 @default.
- W4313201715 hasRelatedWork W4293226380 @default.
- W4313201715 hasRelatedWork W4313906399 @default.
- W4313201715 hasRelatedWork W4321487865 @default.
- W4313201715 hasRelatedWork W44395729 @default.
- W4313201715 hasRelatedWork W2181948922 @default.
- W4313201715 hasVolume "82" @default.
- W4313201715 isParatext "false" @default.
- W4313201715 isRetracted "false" @default.
- W4313201715 workType "article" @default.