Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313201726> ?p ?o ?g. }
- W4313201726 endingPage "115441" @default.
- W4313201726 startingPage "115441" @default.
- W4313201726 abstract "A deep learning-based methodology is presented to design the topologies and periodic constants of ternary metamaterials under different site conditions, considering both in-plane and anti-plane waves (full-mode waves) coming together. A variational autoencoder (VAE) and a series–parallel neural network (SPNN) are constructed, based on which the design model is established and the metamaterial customization is realized. One thousand designs are performed, where the determination coefficient reaches 0.982, the root mean square error is only 0.785, and the mean design error is 3.1%, evaluating the accuracy and stability of the deep learning method. To illustrate the generality of the presented method, metamaterials under different site conditions are designed. For the same target, multiple sets of metamaterials are given, which reflects the non-uniqueness of design problems. Two sets of metamaterials respectively for two practical examples are customized and discussed with 3D finite element models, verifying their ability of isolating vibrations in all directions." @default.
- W4313201726 created "2023-01-06" @default.
- W4313201726 creator A5049138869 @default.
- W4313201726 creator A5055586841 @default.
- W4313201726 date "2023-02-01" @default.
- W4313201726 modified "2023-10-01" @default.
- W4313201726 title "Deep learning-based design of ternary metamaterials for isolating full-mode waves" @default.
- W4313201726 cites W2015459991 @default.
- W4313201726 cites W2017305992 @default.
- W4313201726 cites W2054837260 @default.
- W4313201726 cites W2097117768 @default.
- W4313201726 cites W2118557007 @default.
- W4313201726 cites W2344980688 @default.
- W4313201726 cites W2417284218 @default.
- W4313201726 cites W2741831090 @default.
- W4313201726 cites W2766162919 @default.
- W4313201726 cites W2766203675 @default.
- W4313201726 cites W2809668611 @default.
- W4313201726 cites W2896134062 @default.
- W4313201726 cites W2899673042 @default.
- W4313201726 cites W2900511825 @default.
- W4313201726 cites W2918082440 @default.
- W4313201726 cites W2963446712 @default.
- W4313201726 cites W2971019578 @default.
- W4313201726 cites W2991322414 @default.
- W4313201726 cites W3025017190 @default.
- W4313201726 cites W3029567909 @default.
- W4313201726 cites W3031343610 @default.
- W4313201726 cites W3082366755 @default.
- W4313201726 cites W3083791730 @default.
- W4313201726 cites W3087179437 @default.
- W4313201726 cites W3092323705 @default.
- W4313201726 cites W3094241042 @default.
- W4313201726 cites W3096154109 @default.
- W4313201726 cites W3119472565 @default.
- W4313201726 cites W3132896017 @default.
- W4313201726 cites W3157259013 @default.
- W4313201726 cites W3181684814 @default.
- W4313201726 cites W3201032957 @default.
- W4313201726 cites W3202629585 @default.
- W4313201726 cites W3213554106 @default.
- W4313201726 cites W4213111566 @default.
- W4313201726 cites W4223605238 @default.
- W4313201726 cites W4281256963 @default.
- W4313201726 cites W2157925045 @default.
- W4313201726 doi "https://doi.org/10.1016/j.engstruct.2022.115441" @default.
- W4313201726 hasPublicationYear "2023" @default.
- W4313201726 type Work @default.
- W4313201726 citedByCount "1" @default.
- W4313201726 countsByYear W43132017262023 @default.
- W4313201726 crossrefType "journal-article" @default.
- W4313201726 hasAuthorship W4313201726A5049138869 @default.
- W4313201726 hasAuthorship W4313201726A5055586841 @default.
- W4313201726 hasConcept C101738243 @default.
- W4313201726 hasConcept C105795698 @default.
- W4313201726 hasConcept C110367647 @default.
- W4313201726 hasConcept C11413529 @default.
- W4313201726 hasConcept C114614502 @default.
- W4313201726 hasConcept C120665830 @default.
- W4313201726 hasConcept C121332964 @default.
- W4313201726 hasConcept C139945424 @default.
- W4313201726 hasConcept C154945302 @default.
- W4313201726 hasConcept C184720557 @default.
- W4313201726 hasConcept C199360897 @default.
- W4313201726 hasConcept C33923547 @default.
- W4313201726 hasConcept C41008148 @default.
- W4313201726 hasConcept C50644808 @default.
- W4313201726 hasConcept C64452783 @default.
- W4313201726 hasConceptScore W4313201726C101738243 @default.
- W4313201726 hasConceptScore W4313201726C105795698 @default.
- W4313201726 hasConceptScore W4313201726C110367647 @default.
- W4313201726 hasConceptScore W4313201726C11413529 @default.
- W4313201726 hasConceptScore W4313201726C114614502 @default.
- W4313201726 hasConceptScore W4313201726C120665830 @default.
- W4313201726 hasConceptScore W4313201726C121332964 @default.
- W4313201726 hasConceptScore W4313201726C139945424 @default.
- W4313201726 hasConceptScore W4313201726C154945302 @default.
- W4313201726 hasConceptScore W4313201726C184720557 @default.
- W4313201726 hasConceptScore W4313201726C199360897 @default.
- W4313201726 hasConceptScore W4313201726C33923547 @default.
- W4313201726 hasConceptScore W4313201726C41008148 @default.
- W4313201726 hasConceptScore W4313201726C50644808 @default.
- W4313201726 hasConceptScore W4313201726C64452783 @default.
- W4313201726 hasFunder F4320321001 @default.
- W4313201726 hasFunder F4320322919 @default.
- W4313201726 hasLocation W43132017261 @default.
- W4313201726 hasOpenAccess W4313201726 @default.
- W4313201726 hasPrimaryLocation W43132017261 @default.
- W4313201726 hasRelatedWork W1592972299 @default.
- W4313201726 hasRelatedWork W1632999579 @default.
- W4313201726 hasRelatedWork W2386387936 @default.
- W4313201726 hasRelatedWork W2392110728 @default.
- W4313201726 hasRelatedWork W2927931735 @default.
- W4313201726 hasRelatedWork W3158556898 @default.
- W4313201726 hasRelatedWork W4291322237 @default.
- W4313201726 hasRelatedWork W4365458731 @default.
- W4313201726 hasRelatedWork W4385541897 @default.
- W4313201726 hasRelatedWork W4386105216 @default.