Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313201790> ?p ?o ?g. }
- W4313201790 endingPage "103235" @default.
- W4313201790 startingPage "103235" @default.
- W4313201790 abstract "Imbalanced sample distribution is usually the main reason for the performance degradation of machine learning algorithms. Based on this, this study proposes a hybrid framework (RGAN-EL) combining generative adversarial networks and ensemble learning method to improve the classification performance of imbalanced data. Firstly, we propose a training sample selection strategy based on roulette wheel selection method to make GAN pay more attention to the class overlapping area when fitting the sample distribution. Secondly, we design two kinds of generator training loss, and propose a noise sample filtering method to improve the quality of generated samples. Then, minority class samples are oversampled using the improved RGAN to obtain a balanced training sample set. Finally, combined with the ensemble learning strategy, the final training and prediction are carried out. We conducted experiments on 41 real imbalanced data sets using two evaluation indexes: F1-score and AUC. Specifically, we compare RGAN-EL with six typical ensemble learning; RGAN is compared with three typical GAN models. The experimental results show that RGAN-EL is significantly better than the other six ensemble learning methods, and RGAN is greatly improved compared with three classical GAN models." @default.
- W4313201790 created "2023-01-06" @default.
- W4313201790 creator A5017777141 @default.
- W4313201790 creator A5018752239 @default.
- W4313201790 creator A5041280931 @default.
- W4313201790 creator A5058161586 @default.
- W4313201790 creator A5080389312 @default.
- W4313201790 creator A5080556931 @default.
- W4313201790 date "2023-03-01" @default.
- W4313201790 modified "2023-10-14" @default.
- W4313201790 title "RGAN-EL: A GAN and ensemble learning-based hybrid approach for imbalanced data classification" @default.
- W4313201790 cites W2070493638 @default.
- W4313201790 cites W2076272581 @default.
- W4313201790 cites W2148143831 @default.
- W4313201790 cites W2168508521 @default.
- W4313201790 cites W2185967890 @default.
- W4313201790 cites W2512691369 @default.
- W4313201790 cites W2896206046 @default.
- W4313201790 cites W2940568479 @default.
- W4313201790 cites W2946229570 @default.
- W4313201790 cites W2964268978 @default.
- W4313201790 cites W2965940114 @default.
- W4313201790 cites W2971749073 @default.
- W4313201790 cites W3022206528 @default.
- W4313201790 cites W3030918493 @default.
- W4313201790 cites W3039142166 @default.
- W4313201790 cites W3042350893 @default.
- W4313201790 cites W3047976641 @default.
- W4313201790 cites W3084392724 @default.
- W4313201790 cites W3089310265 @default.
- W4313201790 cites W3090132388 @default.
- W4313201790 cites W3091535145 @default.
- W4313201790 cites W3100774601 @default.
- W4313201790 cites W3102476541 @default.
- W4313201790 cites W3104109355 @default.
- W4313201790 cites W3109072952 @default.
- W4313201790 cites W3110899937 @default.
- W4313201790 cites W3111875476 @default.
- W4313201790 cites W3113069800 @default.
- W4313201790 cites W3118096520 @default.
- W4313201790 cites W3120644841 @default.
- W4313201790 cites W3125241865 @default.
- W4313201790 cites W3129693849 @default.
- W4313201790 cites W3133896312 @default.
- W4313201790 cites W3134020713 @default.
- W4313201790 cites W3152849906 @default.
- W4313201790 cites W3212743864 @default.
- W4313201790 cites W4200464085 @default.
- W4313201790 cites W4200472276 @default.
- W4313201790 cites W4210743106 @default.
- W4313201790 cites W4212922948 @default.
- W4313201790 cites W4212954694 @default.
- W4313201790 doi "https://doi.org/10.1016/j.ipm.2022.103235" @default.
- W4313201790 hasPublicationYear "2023" @default.
- W4313201790 type Work @default.
- W4313201790 citedByCount "9" @default.
- W4313201790 countsByYear W43132017902023 @default.
- W4313201790 crossrefType "journal-article" @default.
- W4313201790 hasAuthorship W4313201790A5017777141 @default.
- W4313201790 hasAuthorship W4313201790A5018752239 @default.
- W4313201790 hasAuthorship W4313201790A5041280931 @default.
- W4313201790 hasAuthorship W4313201790A5058161586 @default.
- W4313201790 hasAuthorship W4313201790A5080389312 @default.
- W4313201790 hasAuthorship W4313201790A5080556931 @default.
- W4313201790 hasConcept C119857082 @default.
- W4313201790 hasConcept C121332964 @default.
- W4313201790 hasConcept C124101348 @default.
- W4313201790 hasConcept C153180895 @default.
- W4313201790 hasConcept C154945302 @default.
- W4313201790 hasConcept C163258240 @default.
- W4313201790 hasConcept C185592680 @default.
- W4313201790 hasConcept C195502155 @default.
- W4313201790 hasConcept C197323446 @default.
- W4313201790 hasConcept C198531522 @default.
- W4313201790 hasConcept C2524010 @default.
- W4313201790 hasConcept C2776257435 @default.
- W4313201790 hasConcept C2777212361 @default.
- W4313201790 hasConcept C2780992000 @default.
- W4313201790 hasConcept C31258907 @default.
- W4313201790 hasConcept C33923547 @default.
- W4313201790 hasConcept C41008148 @default.
- W4313201790 hasConcept C43617362 @default.
- W4313201790 hasConcept C45942800 @default.
- W4313201790 hasConcept C62520636 @default.
- W4313201790 hasConcept C81917197 @default.
- W4313201790 hasConceptScore W4313201790C119857082 @default.
- W4313201790 hasConceptScore W4313201790C121332964 @default.
- W4313201790 hasConceptScore W4313201790C124101348 @default.
- W4313201790 hasConceptScore W4313201790C153180895 @default.
- W4313201790 hasConceptScore W4313201790C154945302 @default.
- W4313201790 hasConceptScore W4313201790C163258240 @default.
- W4313201790 hasConceptScore W4313201790C185592680 @default.
- W4313201790 hasConceptScore W4313201790C195502155 @default.
- W4313201790 hasConceptScore W4313201790C197323446 @default.
- W4313201790 hasConceptScore W4313201790C198531522 @default.
- W4313201790 hasConceptScore W4313201790C2524010 @default.
- W4313201790 hasConceptScore W4313201790C2776257435 @default.
- W4313201790 hasConceptScore W4313201790C2777212361 @default.