Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313201837> ?p ?o ?g. }
- W4313201837 endingPage "100152" @default.
- W4313201837 startingPage "100152" @default.
- W4313201837 abstract "In a context of growing demand for food and the scarcity of natural resources, the development of more sustainable agriculture is imperative. This means it is necessary to limit the environmental impact of agricultural activities on soil and water and to be mindful of the carbon footprint, while maintaining crop yields and economic benefits for producers. Crop rotation is a valuable tool in sustainable agriculture, but this technique has to be appropriately coupled with sustainable fertilization plans to optimize crops. The proposed methodology uses recurrent neural networks (RNN); more precisely, LSTMs, in a Seq2Seq architecture, to predict the most probable scenarios of crop rotations to be exploited in a field in subsequent growing seasons, according to cropping habits. The output can be used in crop models to build a decision support system for greater sustainability in agricultural production by allowing producers to choose the strategy that offers the best compromise between profitability and environmental impact." @default.
- W4313201837 created "2023-01-06" @default.
- W4313201837 creator A5025203636 @default.
- W4313201837 creator A5055886201 @default.
- W4313201837 creator A5061832410 @default.
- W4313201837 date "2023-08-01" @default.
- W4313201837 modified "2023-10-15" @default.
- W4313201837 title "Methodology for multi-temporal prediction of crop rotations using recurrent neural networks" @default.
- W4313201837 cites W1969784023 @default.
- W4313201837 cites W1984671422 @default.
- W4313201837 cites W1984689920 @default.
- W4313201837 cites W1990269032 @default.
- W4313201837 cites W2006949910 @default.
- W4313201837 cites W2011900931 @default.
- W4313201837 cites W2013414890 @default.
- W4313201837 cites W2064675550 @default.
- W4313201837 cites W2074632501 @default.
- W4313201837 cites W2082554996 @default.
- W4313201837 cites W2107878631 @default.
- W4313201837 cites W2135204852 @default.
- W4313201837 cites W2148333466 @default.
- W4313201837 cites W2157331557 @default.
- W4313201837 cites W2604086375 @default.
- W4313201837 cites W2763045862 @default.
- W4313201837 cites W2786577118 @default.
- W4313201837 cites W2899190501 @default.
- W4313201837 cites W2940160051 @default.
- W4313201837 cites W2963330725 @default.
- W4313201837 cites W2963393241 @default.
- W4313201837 cites W2964724665 @default.
- W4313201837 cites W2973946059 @default.
- W4313201837 cites W2981691152 @default.
- W4313201837 cites W3014444579 @default.
- W4313201837 cites W3033032256 @default.
- W4313201837 cites W3045153122 @default.
- W4313201837 cites W3046918937 @default.
- W4313201837 cites W3048630347 @default.
- W4313201837 cites W3136896197 @default.
- W4313201837 cites W3194020499 @default.
- W4313201837 cites W4210392349 @default.
- W4313201837 cites W4315977356 @default.
- W4313201837 doi "https://doi.org/10.1016/j.atech.2022.100152" @default.
- W4313201837 hasPublicationYear "2023" @default.
- W4313201837 type Work @default.
- W4313201837 citedByCount "1" @default.
- W4313201837 countsByYear W43132018372023 @default.
- W4313201837 crossrefType "journal-article" @default.
- W4313201837 hasAuthorship W4313201837A5025203636 @default.
- W4313201837 hasAuthorship W4313201837A5055886201 @default.
- W4313201837 hasAuthorship W4313201837A5061832410 @default.
- W4313201837 hasBestOaLocation W43132018371 @default.
- W4313201837 hasConcept C10138342 @default.
- W4313201837 hasConcept C109747225 @default.
- W4313201837 hasConcept C118518473 @default.
- W4313201837 hasConcept C127413603 @default.
- W4313201837 hasConcept C129361004 @default.
- W4313201837 hasConcept C134560507 @default.
- W4313201837 hasConcept C13558536 @default.
- W4313201837 hasConcept C144133560 @default.
- W4313201837 hasConcept C151730666 @default.
- W4313201837 hasConcept C162324750 @default.
- W4313201837 hasConcept C175444787 @default.
- W4313201837 hasConcept C175760724 @default.
- W4313201837 hasConcept C18903297 @default.
- W4313201837 hasConcept C202444582 @default.
- W4313201837 hasConcept C2779343474 @default.
- W4313201837 hasConcept C33923547 @default.
- W4313201837 hasConcept C39432304 @default.
- W4313201837 hasConcept C41008148 @default.
- W4313201837 hasConcept C54286561 @default.
- W4313201837 hasConcept C54924851 @default.
- W4313201837 hasConcept C66204764 @default.
- W4313201837 hasConcept C86803240 @default.
- W4313201837 hasConcept C88463610 @default.
- W4313201837 hasConcept C9652623 @default.
- W4313201837 hasConceptScore W4313201837C10138342 @default.
- W4313201837 hasConceptScore W4313201837C109747225 @default.
- W4313201837 hasConceptScore W4313201837C118518473 @default.
- W4313201837 hasConceptScore W4313201837C127413603 @default.
- W4313201837 hasConceptScore W4313201837C129361004 @default.
- W4313201837 hasConceptScore W4313201837C134560507 @default.
- W4313201837 hasConceptScore W4313201837C13558536 @default.
- W4313201837 hasConceptScore W4313201837C144133560 @default.
- W4313201837 hasConceptScore W4313201837C151730666 @default.
- W4313201837 hasConceptScore W4313201837C162324750 @default.
- W4313201837 hasConceptScore W4313201837C175444787 @default.
- W4313201837 hasConceptScore W4313201837C175760724 @default.
- W4313201837 hasConceptScore W4313201837C18903297 @default.
- W4313201837 hasConceptScore W4313201837C202444582 @default.
- W4313201837 hasConceptScore W4313201837C2779343474 @default.
- W4313201837 hasConceptScore W4313201837C33923547 @default.
- W4313201837 hasConceptScore W4313201837C39432304 @default.
- W4313201837 hasConceptScore W4313201837C41008148 @default.
- W4313201837 hasConceptScore W4313201837C54286561 @default.
- W4313201837 hasConceptScore W4313201837C54924851 @default.
- W4313201837 hasConceptScore W4313201837C66204764 @default.
- W4313201837 hasConceptScore W4313201837C86803240 @default.
- W4313201837 hasConceptScore W4313201837C88463610 @default.