Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313201852> ?p ?o ?g. }
- W4313201852 endingPage "13" @default.
- W4313201852 startingPage "3" @default.
- W4313201852 abstract "AbstractMembrane bioreactor (MBR) is one of the most popular sewage treatment technologies. However, membrane fouling, a complicated process, has a negative effect on the membrane service life and effluent quality. A model with high accuracy, stability, generalization ability was needed to overcome this problem. Artificial neural network (ANN) stands out from numerous machine learning modeling methods with self-learning and sufficient capacity to capture the nonlinear complexity processes. In this paper, back-propagation neural network models (BPNN) with different hyper parameters were proposed using back-propagation algorithm. To improve the efficiency of learning process, batch module was introduced into training dataset. 4000 samples experimental data have been collected with the MBR pilot plant, 60% was used for training, 20% was used for validation, the rest for testing. With the simulation result, in theory a three-layer ANN have the ability to fit any mapping problem was proved with an average of 98% for R2 performance. However, with the comparison of models with different hyper parameters, two hidden layer models have a better performance with appropriate neurons, within an acceptable computational load. Over-fitting phenomenon occurs when the number of nodes is too large, resulting in larger MAE.KeywordsANNMBRBack-propagationModellingSimulation" @default.
- W4313201852 created "2023-01-06" @default.
- W4313201852 creator A5018484298 @default.
- W4313201852 creator A5035642308 @default.
- W4313201852 creator A5058152911 @default.
- W4313201852 date "2022-01-01" @default.
- W4313201852 modified "2023-09-26" @default.
- W4313201852 title "Flux Modelling of Membrane Bioreactor Process Plant Using Optimized-BPNN" @default.
- W4313201852 cites W1965846381 @default.
- W4313201852 cites W2073001825 @default.
- W4313201852 cites W2079521419 @default.
- W4313201852 cites W2109320898 @default.
- W4313201852 cites W2117216570 @default.
- W4313201852 cites W2131740321 @default.
- W4313201852 cites W2236623899 @default.
- W4313201852 cites W2560054438 @default.
- W4313201852 cites W2769966414 @default.
- W4313201852 cites W2883909062 @default.
- W4313201852 cites W2957382261 @default.
- W4313201852 cites W3004066169 @default.
- W4313201852 cites W3005221066 @default.
- W4313201852 cites W3009397047 @default.
- W4313201852 cites W3025754501 @default.
- W4313201852 cites W3112899745 @default.
- W4313201852 cites W3127995079 @default.
- W4313201852 doi "https://doi.org/10.1007/978-981-19-9195-0_1" @default.
- W4313201852 hasPublicationYear "2022" @default.
- W4313201852 type Work @default.
- W4313201852 citedByCount "0" @default.
- W4313201852 crossrefType "book-chapter" @default.
- W4313201852 hasAuthorship W4313201852A5018484298 @default.
- W4313201852 hasAuthorship W4313201852A5035642308 @default.
- W4313201852 hasAuthorship W4313201852A5058152911 @default.
- W4313201852 hasConcept C111919701 @default.
- W4313201852 hasConcept C112972136 @default.
- W4313201852 hasConcept C115792997 @default.
- W4313201852 hasConcept C119857082 @default.
- W4313201852 hasConcept C121332964 @default.
- W4313201852 hasConcept C127413603 @default.
- W4313201852 hasConcept C134306372 @default.
- W4313201852 hasConcept C154945302 @default.
- W4313201852 hasConcept C155032097 @default.
- W4313201852 hasConcept C158622935 @default.
- W4313201852 hasConcept C177148314 @default.
- W4313201852 hasConcept C180461467 @default.
- W4313201852 hasConcept C185592680 @default.
- W4313201852 hasConcept C186060115 @default.
- W4313201852 hasConcept C2776266027 @default.
- W4313201852 hasConcept C33923547 @default.
- W4313201852 hasConcept C41008148 @default.
- W4313201852 hasConcept C41625074 @default.
- W4313201852 hasConcept C50644808 @default.
- W4313201852 hasConcept C55493867 @default.
- W4313201852 hasConcept C57442070 @default.
- W4313201852 hasConcept C62520636 @default.
- W4313201852 hasConcept C86803240 @default.
- W4313201852 hasConcept C87717796 @default.
- W4313201852 hasConcept C98045186 @default.
- W4313201852 hasConceptScore W4313201852C111919701 @default.
- W4313201852 hasConceptScore W4313201852C112972136 @default.
- W4313201852 hasConceptScore W4313201852C115792997 @default.
- W4313201852 hasConceptScore W4313201852C119857082 @default.
- W4313201852 hasConceptScore W4313201852C121332964 @default.
- W4313201852 hasConceptScore W4313201852C127413603 @default.
- W4313201852 hasConceptScore W4313201852C134306372 @default.
- W4313201852 hasConceptScore W4313201852C154945302 @default.
- W4313201852 hasConceptScore W4313201852C155032097 @default.
- W4313201852 hasConceptScore W4313201852C158622935 @default.
- W4313201852 hasConceptScore W4313201852C177148314 @default.
- W4313201852 hasConceptScore W4313201852C180461467 @default.
- W4313201852 hasConceptScore W4313201852C185592680 @default.
- W4313201852 hasConceptScore W4313201852C186060115 @default.
- W4313201852 hasConceptScore W4313201852C2776266027 @default.
- W4313201852 hasConceptScore W4313201852C33923547 @default.
- W4313201852 hasConceptScore W4313201852C41008148 @default.
- W4313201852 hasConceptScore W4313201852C41625074 @default.
- W4313201852 hasConceptScore W4313201852C50644808 @default.
- W4313201852 hasConceptScore W4313201852C55493867 @default.
- W4313201852 hasConceptScore W4313201852C57442070 @default.
- W4313201852 hasConceptScore W4313201852C62520636 @default.
- W4313201852 hasConceptScore W4313201852C86803240 @default.
- W4313201852 hasConceptScore W4313201852C87717796 @default.
- W4313201852 hasConceptScore W4313201852C98045186 @default.
- W4313201852 hasLocation W43132018521 @default.
- W4313201852 hasOpenAccess W4313201852 @default.
- W4313201852 hasPrimaryLocation W43132018521 @default.
- W4313201852 hasRelatedWork W2034776141 @default.
- W4313201852 hasRelatedWork W2040019480 @default.
- W4313201852 hasRelatedWork W2046306820 @default.
- W4313201852 hasRelatedWork W2061709425 @default.
- W4313201852 hasRelatedWork W2356115644 @default.
- W4313201852 hasRelatedWork W2372927653 @default.
- W4313201852 hasRelatedWork W2921358543 @default.
- W4313201852 hasRelatedWork W2971622111 @default.
- W4313201852 hasRelatedWork W2999332760 @default.
- W4313201852 hasRelatedWork W3004724833 @default.
- W4313201852 isParatext "false" @default.
- W4313201852 isRetracted "false" @default.