Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313201908> ?p ?o ?g. }
- W4313201908 endingPage "126488" @default.
- W4313201908 startingPage "126488" @default.
- W4313201908 abstract "Many 1D computational fuel cell dynamics models are established to predict the performance of proton exchange membrane (PEM) fuel cells for control purposes. The 1D models are of high fidelity over a wide range of operating conditions in comparison with empirical and analytical models and less dependent on a large quantity of experimental data in comparison with data-driven models. However, the relation between the various simplified 1D models and their computing efficiency has not been fully understood. Therefore, the present study investigates the trade-off relation between the model order reduction and computational speed of control-oriented 1D models. A full-order model, considering all essential physical phenomena, is validated against experimental data. Seven reduced-order models, depending on whether convection, liquid water, and thermal effects are simulated, are compared with the full-order model in terms of accuracy and computational speed under the same boundary and initial conditions. The results indicate that the two-phase flow has a more significant impact on the cell performance than non-isothermal and convection effects at high relative humidity and current density conditions. The computing speed of the reduced-order model, in which the convection, liquid water, and temperature variation are omitted, can be 140 times faster than the full-order model." @default.
- W4313201908 created "2023-01-06" @default.
- W4313201908 creator A5020070318 @default.
- W4313201908 creator A5022348134 @default.
- W4313201908 creator A5027394526 @default.
- W4313201908 creator A5088867034 @default.
- W4313201908 date "2023-03-01" @default.
- W4313201908 modified "2023-09-25" @default.
- W4313201908 title "Control-oriented computational fuel cell dynamics modeling – Model order reduction vs. computational speed" @default.
- W4313201908 cites W1635830767 @default.
- W4313201908 cites W1971369189 @default.
- W4313201908 cites W1980196589 @default.
- W4313201908 cites W1982295350 @default.
- W4313201908 cites W1990978960 @default.
- W4313201908 cites W1995822408 @default.
- W4313201908 cites W2000480774 @default.
- W4313201908 cites W2009712046 @default.
- W4313201908 cites W2009975704 @default.
- W4313201908 cites W2010074499 @default.
- W4313201908 cites W2010792352 @default.
- W4313201908 cites W2032598586 @default.
- W4313201908 cites W2034142852 @default.
- W4313201908 cites W2038081211 @default.
- W4313201908 cites W2044307855 @default.
- W4313201908 cites W2056005586 @default.
- W4313201908 cites W2073595754 @default.
- W4313201908 cites W2079798656 @default.
- W4313201908 cites W2109494795 @default.
- W4313201908 cites W2117873432 @default.
- W4313201908 cites W2122099868 @default.
- W4313201908 cites W2131603166 @default.
- W4313201908 cites W2150765896 @default.
- W4313201908 cites W2152287253 @default.
- W4313201908 cites W2152578705 @default.
- W4313201908 cites W2266811401 @default.
- W4313201908 cites W2289981151 @default.
- W4313201908 cites W2340266817 @default.
- W4313201908 cites W2345019730 @default.
- W4313201908 cites W2470387191 @default.
- W4313201908 cites W2529449433 @default.
- W4313201908 cites W2544219874 @default.
- W4313201908 cites W2573074075 @default.
- W4313201908 cites W2599399722 @default.
- W4313201908 cites W2606865441 @default.
- W4313201908 cites W2643918841 @default.
- W4313201908 cites W2729338752 @default.
- W4313201908 cites W2735955338 @default.
- W4313201908 cites W2765963002 @default.
- W4313201908 cites W2789300120 @default.
- W4313201908 cites W2790706469 @default.
- W4313201908 cites W2792760538 @default.
- W4313201908 cites W2793635414 @default.
- W4313201908 cites W2800671986 @default.
- W4313201908 cites W2890600852 @default.
- W4313201908 cites W2900495295 @default.
- W4313201908 cites W2901828113 @default.
- W4313201908 cites W2915451706 @default.
- W4313201908 cites W2922060152 @default.
- W4313201908 cites W2928830167 @default.
- W4313201908 cites W2931098272 @default.
- W4313201908 cites W2937257272 @default.
- W4313201908 cites W2946698763 @default.
- W4313201908 cites W2951461142 @default.
- W4313201908 cites W2981248418 @default.
- W4313201908 cites W3018944197 @default.
- W4313201908 cites W3035868741 @default.
- W4313201908 cites W3093406260 @default.
- W4313201908 cites W3096676884 @default.
- W4313201908 cites W3115598587 @default.
- W4313201908 cites W3185467945 @default.
- W4313201908 cites W3195650707 @default.
- W4313201908 cites W3199662504 @default.
- W4313201908 cites W4200590822 @default.
- W4313201908 cites W4220684922 @default.
- W4313201908 cites W4220821550 @default.
- W4313201908 cites W4281393717 @default.
- W4313201908 doi "https://doi.org/10.1016/j.energy.2022.126488" @default.
- W4313201908 hasPublicationYear "2023" @default.
- W4313201908 type Work @default.
- W4313201908 citedByCount "1" @default.
- W4313201908 countsByYear W43132019082023 @default.
- W4313201908 crossrefType "journal-article" @default.
- W4313201908 hasAuthorship W4313201908A5020070318 @default.
- W4313201908 hasAuthorship W4313201908A5022348134 @default.
- W4313201908 hasAuthorship W4313201908A5027394526 @default.
- W4313201908 hasAuthorship W4313201908A5088867034 @default.
- W4313201908 hasConcept C10899652 @default.
- W4313201908 hasConcept C111335779 @default.
- W4313201908 hasConcept C121332964 @default.
- W4313201908 hasConcept C127413603 @default.
- W4313201908 hasConcept C132319479 @default.
- W4313201908 hasConcept C146978453 @default.
- W4313201908 hasConcept C1633027 @default.
- W4313201908 hasConcept C204323151 @default.
- W4313201908 hasConcept C204530211 @default.
- W4313201908 hasConcept C2524010 @default.
- W4313201908 hasConcept C2987658370 @default.
- W4313201908 hasConcept C33923547 @default.