Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313201932> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4313201932 endingPage "95" @default.
- W4313201932 startingPage "91" @default.
- W4313201932 abstract "Freezing of the upper limb in Parkinson's disease patients occurring during writing tests constitutes the research subject of the present paper. Digitisation of the writing and drawing tests coupled with artificial intelligence techniques have demonstrated accurate results in supporting the diagnostics of Parkinson's disease. In the digital setting, the analysis of freezing episodes did not get much attention. The main goal of the present paper is to determine if the neighbourhood of the point where freezing occurred possesses sufficient discriminating power to distinguish between the Parkinson's disease patients and healthy control individuals. For each freezing episode, time intervals of one second before and after are considered. These intervals are described by the hand movement's kinematic and pressure parameters. These parameters are used as features for the standard machine learning workflow that applies a nested cross-validation loop. The paper's main findings have demonstrated that analysis of the freezing neighbourhoods allows distinguishing Parkinson's disease patients from age matched healthy controls. The best results were achieved based on the movements occurring one second after the freezing episode. Kinematic and pressure-based features describing these movements have allowed training classifiers whose accuracy, precision, and recall have reached the values of 0.86, 0.86 and 0.93, respectively. Furthermore, the achieved results are comparable to those available in the literature" @default.
- W4313201932 created "2023-01-06" @default.
- W4313201932 creator A5011944659 @default.
- W4313201932 creator A5027585632 @default.
- W4313201932 creator A5075104970 @default.
- W4313201932 creator A5077197383 @default.
- W4313201932 creator A5081748391 @default.
- W4313201932 creator A5084458274 @default.
- W4313201932 date "2022-01-01" @default.
- W4313201932 modified "2023-10-03" @default.
- W4313201932 title "Machine Learning Based Analysis of the Upper Limb Freezing During Handwriting in Parkinson's Disease Patients" @default.
- W4313201932 cites W1970766982 @default.
- W4313201932 cites W1970868395 @default.
- W4313201932 cites W1997374099 @default.
- W4313201932 cites W2110626075 @default.
- W4313201932 cites W2143426320 @default.
- W4313201932 cites W2171000498 @default.
- W4313201932 cites W2180836370 @default.
- W4313201932 cites W2265145536 @default.
- W4313201932 cites W2470003547 @default.
- W4313201932 cites W2594717364 @default.
- W4313201932 cites W3128207712 @default.
- W4313201932 cites W4211123396 @default.
- W4313201932 cites W4213145762 @default.
- W4313201932 doi "https://doi.org/10.1016/j.ifacol.2022.10.237" @default.
- W4313201932 hasPublicationYear "2022" @default.
- W4313201932 type Work @default.
- W4313201932 citedByCount "0" @default.
- W4313201932 crossrefType "journal-article" @default.
- W4313201932 hasAuthorship W4313201932A5011944659 @default.
- W4313201932 hasAuthorship W4313201932A5027585632 @default.
- W4313201932 hasAuthorship W4313201932A5075104970 @default.
- W4313201932 hasAuthorship W4313201932A5077197383 @default.
- W4313201932 hasAuthorship W4313201932A5081748391 @default.
- W4313201932 hasAuthorship W4313201932A5084458274 @default.
- W4313201932 hasBestOaLocation W43132019321 @default.
- W4313201932 hasConcept C100660578 @default.
- W4313201932 hasConcept C121332964 @default.
- W4313201932 hasConcept C142724271 @default.
- W4313201932 hasConcept C154945302 @default.
- W4313201932 hasConcept C15744967 @default.
- W4313201932 hasConcept C180747234 @default.
- W4313201932 hasConcept C2779134260 @default.
- W4313201932 hasConcept C2779386606 @default.
- W4313201932 hasConcept C2779734285 @default.
- W4313201932 hasConcept C39920418 @default.
- W4313201932 hasConcept C41008148 @default.
- W4313201932 hasConcept C71924100 @default.
- W4313201932 hasConcept C74650414 @default.
- W4313201932 hasConcept C99508421 @default.
- W4313201932 hasConceptScore W4313201932C100660578 @default.
- W4313201932 hasConceptScore W4313201932C121332964 @default.
- W4313201932 hasConceptScore W4313201932C142724271 @default.
- W4313201932 hasConceptScore W4313201932C154945302 @default.
- W4313201932 hasConceptScore W4313201932C15744967 @default.
- W4313201932 hasConceptScore W4313201932C180747234 @default.
- W4313201932 hasConceptScore W4313201932C2779134260 @default.
- W4313201932 hasConceptScore W4313201932C2779386606 @default.
- W4313201932 hasConceptScore W4313201932C2779734285 @default.
- W4313201932 hasConceptScore W4313201932C39920418 @default.
- W4313201932 hasConceptScore W4313201932C41008148 @default.
- W4313201932 hasConceptScore W4313201932C71924100 @default.
- W4313201932 hasConceptScore W4313201932C74650414 @default.
- W4313201932 hasConceptScore W4313201932C99508421 @default.
- W4313201932 hasFunder F4320320300 @default.
- W4313201932 hasFunder F4320321090 @default.
- W4313201932 hasFunder F4320338080 @default.
- W4313201932 hasIssue "29" @default.
- W4313201932 hasLocation W43132019321 @default.
- W4313201932 hasOpenAccess W4313201932 @default.
- W4313201932 hasPrimaryLocation W43132019321 @default.
- W4313201932 hasRelatedWork W1980207415 @default.
- W4313201932 hasRelatedWork W1988130891 @default.
- W4313201932 hasRelatedWork W2000250264 @default.
- W4313201932 hasRelatedWork W2053733845 @default.
- W4313201932 hasRelatedWork W2077464323 @default.
- W4313201932 hasRelatedWork W2370337717 @default.
- W4313201932 hasRelatedWork W2748952813 @default.
- W4313201932 hasRelatedWork W2899084033 @default.
- W4313201932 hasRelatedWork W3034027039 @default.
- W4313201932 hasRelatedWork W4213425692 @default.
- W4313201932 hasVolume "55" @default.
- W4313201932 isParatext "false" @default.
- W4313201932 isRetracted "false" @default.
- W4313201932 workType "article" @default.