Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313201998> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4313201998 endingPage "247" @default.
- W4313201998 startingPage "241" @default.
- W4313201998 abstract "This paper presents an extension of a self-learning control concept for automatic track guidance of industrial trucks in intralogistic systems. The presented approach is based on Reinforcement Learning (RL), a method of Artificial Intelligence (AI) and is able to adapt itself to different industrial truck variants and the associated specific vehicle parameters. Moreover, time-variant parameters during operation, such as the vehicle's velocity are taken into account. In order to consider the existing a priori knowledge of the controlled system and to avoid starting the whole training process of the controller for each truck variant from scratch, the training process is divided into two steps. In the first step, the controller is trained on a model using parameters of a nominal vehicle variant. Based on this, the control parameters are only fine-tuned in the second step. In this way the controller is adapted to the actual truck variant and the corresponding parameter values. In order to take into account the time-variant vehicle parameters during operation, the Artificial Neural Networks (ANN) of the RL controller and the observation vector are suitably extended. In this way, the varying speed can be considered in both training steps and the control parameters can be optimized accordingly. Thus, in case of the investigated scenarios a stable control loop behavior can be guaranteed for the entire speed range of industrial trucks. In order to demonstrate this, the new approach is compared with a RL control concept, not considering time-variant parameters." @default.
- W4313201998 created "2023-01-06" @default.
- W4313201998 creator A5003673501 @default.
- W4313201998 creator A5003901920 @default.
- W4313201998 creator A5041564876 @default.
- W4313201998 creator A5059729127 @default.
- W4313201998 creator A5087126334 @default.
- W4313201998 date "2022-01-01" @default.
- W4313201998 modified "2023-10-14" @default.
- W4313201998 title "Automatic track guidance of industrial trucks with time-variant vehicle parameters using AI-based controllers" @default.
- W4313201998 cites W2120691427 @default.
- W4313201998 doi "https://doi.org/10.1016/j.ifacol.2022.10.291" @default.
- W4313201998 hasPublicationYear "2022" @default.
- W4313201998 type Work @default.
- W4313201998 citedByCount "0" @default.
- W4313201998 crossrefType "journal-article" @default.
- W4313201998 hasAuthorship W4313201998A5003673501 @default.
- W4313201998 hasAuthorship W4313201998A5003901920 @default.
- W4313201998 hasAuthorship W4313201998A5041564876 @default.
- W4313201998 hasAuthorship W4313201998A5059729127 @default.
- W4313201998 hasAuthorship W4313201998A5087126334 @default.
- W4313201998 hasBestOaLocation W43132019981 @default.
- W4313201998 hasConcept C111919701 @default.
- W4313201998 hasConcept C127413603 @default.
- W4313201998 hasConcept C133731056 @default.
- W4313201998 hasConcept C146978453 @default.
- W4313201998 hasConcept C154945302 @default.
- W4313201998 hasConcept C171146098 @default.
- W4313201998 hasConcept C203479927 @default.
- W4313201998 hasConcept C204323151 @default.
- W4313201998 hasConcept C2775924081 @default.
- W4313201998 hasConcept C41008148 @default.
- W4313201998 hasConcept C47446073 @default.
- W4313201998 hasConcept C50644808 @default.
- W4313201998 hasConcept C52121051 @default.
- W4313201998 hasConcept C6557445 @default.
- W4313201998 hasConcept C86803240 @default.
- W4313201998 hasConcept C89992363 @default.
- W4313201998 hasConcept C97541855 @default.
- W4313201998 hasConcept C98045186 @default.
- W4313201998 hasConceptScore W4313201998C111919701 @default.
- W4313201998 hasConceptScore W4313201998C127413603 @default.
- W4313201998 hasConceptScore W4313201998C133731056 @default.
- W4313201998 hasConceptScore W4313201998C146978453 @default.
- W4313201998 hasConceptScore W4313201998C154945302 @default.
- W4313201998 hasConceptScore W4313201998C171146098 @default.
- W4313201998 hasConceptScore W4313201998C203479927 @default.
- W4313201998 hasConceptScore W4313201998C204323151 @default.
- W4313201998 hasConceptScore W4313201998C2775924081 @default.
- W4313201998 hasConceptScore W4313201998C41008148 @default.
- W4313201998 hasConceptScore W4313201998C47446073 @default.
- W4313201998 hasConceptScore W4313201998C50644808 @default.
- W4313201998 hasConceptScore W4313201998C52121051 @default.
- W4313201998 hasConceptScore W4313201998C6557445 @default.
- W4313201998 hasConceptScore W4313201998C86803240 @default.
- W4313201998 hasConceptScore W4313201998C89992363 @default.
- W4313201998 hasConceptScore W4313201998C97541855 @default.
- W4313201998 hasConceptScore W4313201998C98045186 @default.
- W4313201998 hasFunder F4320323061 @default.
- W4313201998 hasIssue "24" @default.
- W4313201998 hasLocation W43132019981 @default.
- W4313201998 hasOpenAccess W4313201998 @default.
- W4313201998 hasPrimaryLocation W43132019981 @default.
- W4313201998 hasRelatedWork W1522672041 @default.
- W4313201998 hasRelatedWork W1984717187 @default.
- W4313201998 hasRelatedWork W2047787160 @default.
- W4313201998 hasRelatedWork W2152858547 @default.
- W4313201998 hasRelatedWork W2365785480 @default.
- W4313201998 hasRelatedWork W2393509435 @default.
- W4313201998 hasRelatedWork W2393553316 @default.
- W4313201998 hasRelatedWork W2899084033 @default.
- W4313201998 hasRelatedWork W3074294383 @default.
- W4313201998 hasRelatedWork W4385625863 @default.
- W4313201998 hasVolume "55" @default.
- W4313201998 isParatext "false" @default.
- W4313201998 isRetracted "false" @default.
- W4313201998 workType "article" @default.