Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313202053> ?p ?o ?g. }
- W4313202053 endingPage "108" @default.
- W4313202053 startingPage "93" @default.
- W4313202053 abstract "Abstract Multiple attribute decision‐making (MADM) tools can effectively support the decision analysts in selecting the best alternative among many, ranking the alternatives in decreasing or increasing order of preference, or allocating the alternatives into pre‐defined ordered classes/categories. Even though the literature provides the analyst with precious sorting‐based MADM tools such as PROMSORT, UTADIS, AHPSort, TOPSISsort, and so forth, the majority of the methods can be found complex and hard to be understood by the researchers and practitioners who are not familiar with the mathematical notions and computations of MADM (distance calculation, threshold and preference function determination, and so on). To provide a simpler but powerful MADM tool aiming at sorting the alternatives into classes, this study proposes a sorting‐based additive ratio assessment algorithm which is called ARASsort. For limiting (interval‐based) and central (reference‐based) profiles describing the categories, we have developed two algorithms: ARASsort‐lp and ARASsort‐cp, respectively. Their applicability was shown in two examples: green supplier evaluation and economic freedom evaluation of countries. The validity of algorithms was presented by demonstrating the class assignment similarities between the results obtained by ARASsort, VIKORsort, and TOPSISsort. The findings show that ARASsort works well because it shows a higher level of class assignment similarities with the other methods." @default.
- W4313202053 created "2023-01-06" @default.
- W4313202053 creator A5023302148 @default.
- W4313202053 date "2022-12-25" @default.
- W4313202053 modified "2023-10-17" @default.
- W4313202053 title "<scp>ARASsort</scp>: A new sorting based multiple attribute decision‐making algorithm" @default.
- W4313202053 cites W1789407995 @default.
- W4313202053 cites W1975802371 @default.
- W4313202053 cites W2015343144 @default.
- W4313202053 cites W2045486181 @default.
- W4313202053 cites W2074826689 @default.
- W4313202053 cites W2139130996 @default.
- W4313202053 cites W2521235560 @default.
- W4313202053 cites W2554238227 @default.
- W4313202053 cites W2662517020 @default.
- W4313202053 cites W2794481475 @default.
- W4313202053 cites W2887042943 @default.
- W4313202053 cites W2904944775 @default.
- W4313202053 cites W2910490931 @default.
- W4313202053 cites W2944557404 @default.
- W4313202053 cites W2964205875 @default.
- W4313202053 cites W3003184239 @default.
- W4313202053 cites W3011050983 @default.
- W4313202053 cites W3017661086 @default.
- W4313202053 cites W3111405607 @default.
- W4313202053 cites W3116699712 @default.
- W4313202053 cites W3119194101 @default.
- W4313202053 cites W3120555972 @default.
- W4313202053 cites W3121926373 @default.
- W4313202053 cites W3124981722 @default.
- W4313202053 cites W3127260299 @default.
- W4313202053 cites W3136764657 @default.
- W4313202053 cites W3139491254 @default.
- W4313202053 cites W3148589789 @default.
- W4313202053 cites W3152897623 @default.
- W4313202053 cites W3153912592 @default.
- W4313202053 cites W3154919208 @default.
- W4313202053 cites W3159427948 @default.
- W4313202053 cites W3159765108 @default.
- W4313202053 cites W3161953110 @default.
- W4313202053 cites W3167169082 @default.
- W4313202053 cites W3168123435 @default.
- W4313202053 cites W3170730147 @default.
- W4313202053 cites W3181254413 @default.
- W4313202053 cites W3181872401 @default.
- W4313202053 cites W3183965003 @default.
- W4313202053 cites W3186559029 @default.
- W4313202053 cites W3186583269 @default.
- W4313202053 cites W3194868099 @default.
- W4313202053 cites W3196589243 @default.
- W4313202053 cites W3197218626 @default.
- W4313202053 cites W3199189693 @default.
- W4313202053 cites W3199718764 @default.
- W4313202053 cites W3200271677 @default.
- W4313202053 cites W3200402404 @default.
- W4313202053 cites W3206354884 @default.
- W4313202053 cites W3208844779 @default.
- W4313202053 cites W3210982614 @default.
- W4313202053 cites W3217070077 @default.
- W4313202053 cites W4200227418 @default.
- W4313202053 cites W4200321304 @default.
- W4313202053 cites W4200328982 @default.
- W4313202053 cites W4200354654 @default.
- W4313202053 cites W4205653044 @default.
- W4313202053 cites W4206325434 @default.
- W4313202053 cites W4206543275 @default.
- W4313202053 cites W4210784526 @default.
- W4313202053 doi "https://doi.org/10.1002/mcda.1801" @default.
- W4313202053 hasPublicationYear "2022" @default.
- W4313202053 type Work @default.
- W4313202053 citedByCount "0" @default.
- W4313202053 crossrefType "journal-article" @default.
- W4313202053 hasAuthorship W4313202053A5023302148 @default.
- W4313202053 hasConcept C10138342 @default.
- W4313202053 hasConcept C105795698 @default.
- W4313202053 hasConcept C108094655 @default.
- W4313202053 hasConcept C111696304 @default.
- W4313202053 hasConcept C11413529 @default.
- W4313202053 hasConcept C114614502 @default.
- W4313202053 hasConcept C119857082 @default.
- W4313202053 hasConcept C124101348 @default.
- W4313202053 hasConcept C126255220 @default.
- W4313202053 hasConcept C127413603 @default.
- W4313202053 hasConcept C14036430 @default.
- W4313202053 hasConcept C154945302 @default.
- W4313202053 hasConcept C162324750 @default.
- W4313202053 hasConcept C182306322 @default.
- W4313202053 hasConcept C188198153 @default.
- W4313202053 hasConcept C189430467 @default.
- W4313202053 hasConcept C2777212361 @default.
- W4313202053 hasConcept C2778067643 @default.
- W4313202053 hasConcept C2781249084 @default.
- W4313202053 hasConcept C33923547 @default.
- W4313202053 hasConcept C41008148 @default.
- W4313202053 hasConcept C45374587 @default.
- W4313202053 hasConcept C78458016 @default.
- W4313202053 hasConcept C78519656 @default.
- W4313202053 hasConcept C86803240 @default.