Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313202085> ?p ?o ?g. }
- W4313202085 endingPage "104506" @default.
- W4313202085 startingPage "104506" @default.
- W4313202085 abstract "Cardiac arrhythmias are a significant cause of morbidity and mortality in patients with cardiovascular disease. Accurate rhythm diagnosis is critical in patients presenting with wide QRS complex tachycardia (WCT). Real-time visual interpretation of electrocardiograms (ECG) of complex arrhythmias is difficult and requires expertise. We designed a convolutional neural network (CNN) that could accurately classify WCT into those that are ventricular in origin (ventricular tachycardia (VT)) or supraventricular tachycardia with aberrancy (SVT). A total of 3065 patients with wide complex ECGs were screened (415 with VT and 2650 with SVT). A CNN model was designed through a Neural Architecture Search (NAS) method. This CNN consisted of a stem convolution layer and five cells, each cell containing separable-convolution and dilated-separable-convolution layers. Using 5-fold cross-validation and executing algorithm for five independent runs (with five different seeds), the proposed CNN model achieved a detection accuracy of 87.5 ± 0.0025 and 91.7 %±0.0004 for VT and SVT, respectively. The total sensitivity, specificity, positive predictive value, negative predictive value and F1-score of the CNN model were 88.50 %, 88.50 %, 88.54 %, 88.54 %, and 88.49 %, respectively. In a cohort of patients presenting with a WCT, our CNN model achieved an accuracy of 87.5% and 91.7% to correctly diagnose VT and SVT, respectively. This model has the potential of being used in real-time settings and to assist physicians with interpretation and decision making." @default.
- W4313202085 created "2023-01-06" @default.
- W4313202085 creator A5004955406 @default.
- W4313202085 creator A5005825589 @default.
- W4313202085 creator A5007209236 @default.
- W4313202085 creator A5014673298 @default.
- W4313202085 creator A5029439174 @default.
- W4313202085 creator A5031492664 @default.
- W4313202085 creator A5034477014 @default.
- W4313202085 creator A5038250504 @default.
- W4313202085 creator A5039509612 @default.
- W4313202085 creator A5060495675 @default.
- W4313202085 creator A5061305538 @default.
- W4313202085 creator A5063447489 @default.
- W4313202085 date "2023-03-01" @default.
- W4313202085 modified "2023-10-16" @default.
- W4313202085 title "A novel convolutional neural network structure for differential diagnosis of wide QRS complex tachycardia" @default.
- W4313202085 cites W1498436455 @default.
- W4313202085 cites W1984863175 @default.
- W4313202085 cites W2000982976 @default.
- W4313202085 cites W2026083345 @default.
- W4313202085 cites W2034139177 @default.
- W4313202085 cites W2034529611 @default.
- W4313202085 cites W2034620081 @default.
- W4313202085 cites W2048032753 @default.
- W4313202085 cites W2068677783 @default.
- W4313202085 cites W2073991158 @default.
- W4313202085 cites W2095409369 @default.
- W4313202085 cites W2103635564 @default.
- W4313202085 cites W2115340664 @default.
- W4313202085 cites W2145193031 @default.
- W4313202085 cites W2171430567 @default.
- W4313202085 cites W2179656364 @default.
- W4313202085 cites W2194775991 @default.
- W4313202085 cites W2554348120 @default.
- W4313202085 cites W2586911278 @default.
- W4313202085 cites W2745699887 @default.
- W4313202085 cites W2747849569 @default.
- W4313202085 cites W2794633590 @default.
- W4313202085 cites W2799357314 @default.
- W4313202085 cites W2799460054 @default.
- W4313202085 cites W2902644322 @default.
- W4313202085 cites W2962858109 @default.
- W4313202085 cites W3046118769 @default.
- W4313202085 cites W3117006307 @default.
- W4313202085 cites W3118589349 @default.
- W4313202085 cites W3119635501 @default.
- W4313202085 cites W3164107692 @default.
- W4313202085 cites W4205194941 @default.
- W4313202085 cites W4285161189 @default.
- W4313202085 doi "https://doi.org/10.1016/j.bspc.2022.104506" @default.
- W4313202085 hasPublicationYear "2023" @default.
- W4313202085 type Work @default.
- W4313202085 citedByCount "2" @default.
- W4313202085 countsByYear W43132020852023 @default.
- W4313202085 crossrefType "journal-article" @default.
- W4313202085 hasAuthorship W4313202085A5004955406 @default.
- W4313202085 hasAuthorship W4313202085A5005825589 @default.
- W4313202085 hasAuthorship W4313202085A5007209236 @default.
- W4313202085 hasAuthorship W4313202085A5014673298 @default.
- W4313202085 hasAuthorship W4313202085A5029439174 @default.
- W4313202085 hasAuthorship W4313202085A5031492664 @default.
- W4313202085 hasAuthorship W4313202085A5034477014 @default.
- W4313202085 hasAuthorship W4313202085A5038250504 @default.
- W4313202085 hasAuthorship W4313202085A5039509612 @default.
- W4313202085 hasAuthorship W4313202085A5060495675 @default.
- W4313202085 hasAuthorship W4313202085A5061305538 @default.
- W4313202085 hasAuthorship W4313202085A5063447489 @default.
- W4313202085 hasConcept C108583219 @default.
- W4313202085 hasConcept C111773187 @default.
- W4313202085 hasConcept C11413529 @default.
- W4313202085 hasConcept C126322002 @default.
- W4313202085 hasConcept C153180895 @default.
- W4313202085 hasConcept C154945302 @default.
- W4313202085 hasConcept C164705383 @default.
- W4313202085 hasConcept C2776331378 @default.
- W4313202085 hasConcept C2776934708 @default.
- W4313202085 hasConcept C2780040984 @default.
- W4313202085 hasConcept C2780283014 @default.
- W4313202085 hasConcept C41008148 @default.
- W4313202085 hasConcept C45347329 @default.
- W4313202085 hasConcept C50644808 @default.
- W4313202085 hasConcept C71924100 @default.
- W4313202085 hasConcept C81363708 @default.
- W4313202085 hasConceptScore W4313202085C108583219 @default.
- W4313202085 hasConceptScore W4313202085C111773187 @default.
- W4313202085 hasConceptScore W4313202085C11413529 @default.
- W4313202085 hasConceptScore W4313202085C126322002 @default.
- W4313202085 hasConceptScore W4313202085C153180895 @default.
- W4313202085 hasConceptScore W4313202085C154945302 @default.
- W4313202085 hasConceptScore W4313202085C164705383 @default.
- W4313202085 hasConceptScore W4313202085C2776331378 @default.
- W4313202085 hasConceptScore W4313202085C2776934708 @default.
- W4313202085 hasConceptScore W4313202085C2780040984 @default.
- W4313202085 hasConceptScore W4313202085C2780283014 @default.
- W4313202085 hasConceptScore W4313202085C41008148 @default.
- W4313202085 hasConceptScore W4313202085C45347329 @default.
- W4313202085 hasConceptScore W4313202085C50644808 @default.