Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313203118> ?p ?o ?g. }
- W4313203118 abstract "Differentially private algorithms allow large-scale data analytics while preserving user privacy. Designing such algorithms for graph data is gaining importance with the growth of large networks that model various (sensitive) relationships between individuals. While there exists a rich history of important literature in this space, to the best of our knowledge, no results formalize a relationship between certain parallel and distributed graph algorithms and differentially private graph analysis. In this paper, we define locally adjustable graph algorithms and show that algorithms of this type can be transformed into differentially private algorithms. Our formalization is motivated by a set of results that we present in the central and local models of differential privacy for a number of problems, including k-core decomposition, low out-degree ordering, and densest subgraphs. First, we design an $varepsilon$-edge differentially private (DP) algorithm that returns a subset of nodes that induce a subgraph of density at least $ frac{D^{*}}{1+eta}-O(operatorname{poly}(log n)/varepsilon)$, where $D^{*}$ is the density of the densest subgraph in the input graph (for any constant $etagt 0$). This algorithm achieves a two-fold improvement on the multiplicative approximation factor of the previously best-known private densest subgraph algorithms while maintaining a near-linear runtime. Then, we present an $varepsilon$-locally edge differentially private (LEDP) algorithm for k-core decompositions. Our LEDP algorithm provides approximates the core numbers (for any constant $etagt 0$) with $(2+eta)$ multiplicative and $O(operatorname{poly}(log n)/varepsilon)$ additive error. This is the first differentially private algorithm that outputs private k-core decomposition statistics. We also modify our algorithm to return a differentially private low out-degree ordering of the nodes, where orienting the edges from nodes earlier in the ordering to nodes later in the ordering results in out-degree at most $O(d+$ poly $(log n)/varepsilon$) (where d is the degeneracy of the graph). A small modification to the algorithm also yields a $varepsilon$-LEDP algorithm for $(4+eta,O(operatorname{poly}(log n)/varepsilon))$ approximate densest subgraph (which returns both the set of nodes in the subgraph and its density). Our algorithm uses $O(log^{2}n)$ rounds of communication between the curator and individual nodes." @default.
- W4313203118 created "2023-01-06" @default.
- W4313203118 creator A5039516597 @default.
- W4313203118 creator A5051583907 @default.
- W4313203118 creator A5063461740 @default.
- W4313203118 creator A5065818820 @default.
- W4313203118 creator A5079747792 @default.
- W4313203118 creator A5080839778 @default.
- W4313203118 date "2022-10-01" @default.
- W4313203118 modified "2023-09-30" @default.
- W4313203118 title "Differential Privacy from Locally Adjustable Graph Algorithms: k-Core Decomposition, Low Out-Degree Ordering, and Densest Subgraphs" @default.
- W4313203118 cites W1485742133 @default.
- W4313203118 cites W1535144194 @default.
- W4313203118 cites W1579008745 @default.
- W4313203118 cites W1582397847 @default.
- W4313203118 cites W1586209290 @default.
- W4313203118 cites W1587575659 @default.
- W4313203118 cites W1604615751 @default.
- W4313203118 cites W1872473787 @default.
- W4313203118 cites W1873763122 @default.
- W4313203118 cites W1977458171 @default.
- W4313203118 cites W1985310469 @default.
- W4313203118 cites W1992461601 @default.
- W4313203118 cites W2007664730 @default.
- W4313203118 cites W2017509273 @default.
- W4313203118 cites W2022704179 @default.
- W4313203118 cites W2040886165 @default.
- W4313203118 cites W2042469398 @default.
- W4313203118 cites W204323566 @default.
- W4313203118 cites W2052747341 @default.
- W4313203118 cites W2054560566 @default.
- W4313203118 cites W2055245094 @default.
- W4313203118 cites W2061784418 @default.
- W4313203118 cites W2080900058 @default.
- W4313203118 cites W2087120817 @default.
- W4313203118 cites W2094224753 @default.
- W4313203118 cites W2101771965 @default.
- W4313203118 cites W2103766763 @default.
- W4313203118 cites W2125678004 @default.
- W4313203118 cites W2126077878 @default.
- W4313203118 cites W2133131640 @default.
- W4313203118 cites W2150611147 @default.
- W4313203118 cites W2150865801 @default.
- W4313203118 cites W2162808198 @default.
- W4313203118 cites W2169861334 @default.
- W4313203118 cites W2245160765 @default.
- W4313203118 cites W2245950038 @default.
- W4313203118 cites W2274213011 @default.
- W4313203118 cites W2277497915 @default.
- W4313203118 cites W2395278586 @default.
- W4313203118 cites W2429442430 @default.
- W4313203118 cites W2436309872 @default.
- W4313203118 cites W2566032744 @default.
- W4313203118 cites W2571541240 @default.
- W4313203118 cites W2574388534 @default.
- W4313203118 cites W2605062226 @default.
- W4313203118 cites W2794775679 @default.
- W4313203118 cites W2798465726 @default.
- W4313203118 cites W2802440256 @default.
- W4313203118 cites W2912708407 @default.
- W4313203118 cites W2963369983 @default.
- W4313203118 cites W2971613228 @default.
- W4313203118 cites W2989394982 @default.
- W4313203118 cites W2998702049 @default.
- W4313203118 cites W3011393812 @default.
- W4313203118 cites W3030047573 @default.
- W4313203118 cites W3030831872 @default.
- W4313203118 cites W3033544197 @default.
- W4313203118 cites W3035455649 @default.
- W4313203118 cites W3084816864 @default.
- W4313203118 cites W3100803470 @default.
- W4313203118 cites W3105712299 @default.
- W4313203118 cites W3156935685 @default.
- W4313203118 cites W3176580339 @default.
- W4313203118 cites W4206161257 @default.
- W4313203118 doi "https://doi.org/10.1109/focs54457.2022.00077" @default.
- W4313203118 hasPublicationYear "2022" @default.
- W4313203118 type Work @default.
- W4313203118 citedByCount "1" @default.
- W4313203118 countsByYear W43132031182023 @default.
- W4313203118 crossrefType "proceedings-article" @default.
- W4313203118 hasAuthorship W4313203118A5039516597 @default.
- W4313203118 hasAuthorship W4313203118A5051583907 @default.
- W4313203118 hasAuthorship W4313203118A5063461740 @default.
- W4313203118 hasAuthorship W4313203118A5065818820 @default.
- W4313203118 hasAuthorship W4313203118A5079747792 @default.
- W4313203118 hasAuthorship W4313203118A5080839778 @default.
- W4313203118 hasBestOaLocation W43132031182 @default.
- W4313203118 hasConcept C11413529 @default.
- W4313203118 hasConcept C114614502 @default.
- W4313203118 hasConcept C118615104 @default.
- W4313203118 hasConcept C121332964 @default.
- W4313203118 hasConcept C132525143 @default.
- W4313203118 hasConcept C134306372 @default.
- W4313203118 hasConcept C148764684 @default.
- W4313203118 hasConcept C23130292 @default.
- W4313203118 hasConcept C24890656 @default.
- W4313203118 hasConcept C2775997480 @default.
- W4313203118 hasConcept C33923547 @default.
- W4313203118 hasConcept C41008148 @default.