Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313203473> ?p ?o ?g. }
- W4313203473 abstract "Telemedicine has the potential to be a good resource for early disease diagnosis, provided that it is utilised in the correct manner. The Internet of Things (IoT) is a concept that has developed in recent years as people have become more aware that they are continuously being watched. As a result of the increased prevalence of neurodegenerative disorders like Alzheimer's disease (AD), biomarkers for these conditions are in high demand for early-stage resource prognosis. Because of the precarious nature of the situation, it is absolutely necessary for these structures to offer remarkable qualities such as accessibility and precision. Deep learning strategies could be useful in fitness applications in situations in which there are a large number of data points to be analysed. Excellent data for a decentralized Internet of Things device that is based on block chain technology. By utilizing a connection to the internet that is of a high speed, it is feasible to obtain a prompt answer from these structures. It is not possible to run deep learning algorithms on smart gateway devices since they do not have sufficient computational capacity. In this study, we investigate the potential for increasing the speed of data flow in the healthcare industry while simultaneously improving data quality through the incorporation of blockchain-based deep neural networks into the control system. Experiments are being conducted to evaluate the speed and accuracy of real-time fitness tracking for the purpose of classifying groups. We are able to determine if diseases of the brain are benign or malignant by employing a model that utilises deep learning. For the purpose of determining the relative severity of each condition, the research examines the symptoms of several different mental diseases and compares them to those of Alzheimer's disease, moderate cognitive impairment, and normal cognition. The research calls for a number of different procedures. The majority of the data is used to train the classifiers, while the remainder of the data is utilised in conjunction with an ensemble model and meta classifier to classify individuals into the appropriate categories. The OASIS-three database is a long-term study that incorporates neuroimaging, cognitive, clinical, and biomarker measurements. This study focuses on healthy ageing as well as Alzheimer's disease. When comparing the outcomes of the simulation to those acquired from the real world, the OASIS-three database (AD), in addition to the ADNI UDS dataset, is employed as a comparison tool. The findings show that answers to questions about this issue can be arrived at quickly and categorized utilizing an in-depth methodology (98% accuracy)." @default.
- W4313203473 created "2023-01-06" @default.
- W4313203473 creator A5003408809 @default.
- W4313203473 creator A5008209492 @default.
- W4313203473 creator A5028288917 @default.
- W4313203473 creator A5051945388 @default.
- W4313203473 creator A5076783748 @default.
- W4313203473 creator A5083370047 @default.
- W4313203473 date "2022-10-10" @default.
- W4313203473 modified "2023-09-30" @default.
- W4313203473 title "Detection of Alzheimer's Disease Using Deep Learning, Blockchain, and IoT Cognitive Data" @default.
- W4313203473 cites W1487713954 @default.
- W4313203473 cites W2149614095 @default.
- W4313203473 cites W2161336914 @default.
- W4313203473 cites W2544929175 @default.
- W4313203473 cites W2733306512 @default.
- W4313203473 cites W2762765889 @default.
- W4313203473 cites W2795085730 @default.
- W4313203473 cites W2798763075 @default.
- W4313203473 cites W2883781843 @default.
- W4313203473 cites W2886951144 @default.
- W4313203473 cites W2907683311 @default.
- W4313203473 cites W2910369831 @default.
- W4313203473 cites W2921879499 @default.
- W4313203473 cites W2963993810 @default.
- W4313203473 cites W2996748675 @default.
- W4313203473 cites W3016087461 @default.
- W4313203473 cites W3016105120 @default.
- W4313203473 cites W3041006163 @default.
- W4313203473 cites W3044430020 @default.
- W4313203473 cites W3047824088 @default.
- W4313203473 cites W3049070089 @default.
- W4313203473 cites W3080740574 @default.
- W4313203473 cites W3090025217 @default.
- W4313203473 cites W3109650690 @default.
- W4313203473 cites W3212630001 @default.
- W4313203473 cites W3213651352 @default.
- W4313203473 cites W4205107377 @default.
- W4313203473 cites W4205955447 @default.
- W4313203473 cites W4221113203 @default.
- W4313203473 cites W4236582611 @default.
- W4313203473 doi "https://doi.org/10.1109/ictacs56270.2022.9988058" @default.
- W4313203473 hasPublicationYear "2022" @default.
- W4313203473 type Work @default.
- W4313203473 citedByCount "0" @default.
- W4313203473 crossrefType "proceedings-article" @default.
- W4313203473 hasAuthorship W4313203473A5003408809 @default.
- W4313203473 hasAuthorship W4313203473A5008209492 @default.
- W4313203473 hasAuthorship W4313203473A5028288917 @default.
- W4313203473 hasAuthorship W4313203473A5051945388 @default.
- W4313203473 hasAuthorship W4313203473A5076783748 @default.
- W4313203473 hasAuthorship W4313203473A5083370047 @default.
- W4313203473 hasConcept C108583219 @default.
- W4313203473 hasConcept C110875604 @default.
- W4313203473 hasConcept C111472728 @default.
- W4313203473 hasConcept C119857082 @default.
- W4313203473 hasConcept C124101348 @default.
- W4313203473 hasConcept C136764020 @default.
- W4313203473 hasConcept C138885662 @default.
- W4313203473 hasConcept C154945302 @default.
- W4313203473 hasConcept C187713609 @default.
- W4313203473 hasConcept C199354608 @default.
- W4313203473 hasConcept C206345919 @default.
- W4313203473 hasConcept C2522767166 @default.
- W4313203473 hasConcept C2524010 @default.
- W4313203473 hasConcept C2777210771 @default.
- W4313203473 hasConcept C2777710495 @default.
- W4313203473 hasConcept C2779530757 @default.
- W4313203473 hasConcept C31258907 @default.
- W4313203473 hasConcept C33923547 @default.
- W4313203473 hasConcept C38652104 @default.
- W4313203473 hasConcept C41008148 @default.
- W4313203473 hasConcept C50644808 @default.
- W4313203473 hasConcept C75684735 @default.
- W4313203473 hasConcept C81860439 @default.
- W4313203473 hasConceptScore W4313203473C108583219 @default.
- W4313203473 hasConceptScore W4313203473C110875604 @default.
- W4313203473 hasConceptScore W4313203473C111472728 @default.
- W4313203473 hasConceptScore W4313203473C119857082 @default.
- W4313203473 hasConceptScore W4313203473C124101348 @default.
- W4313203473 hasConceptScore W4313203473C136764020 @default.
- W4313203473 hasConceptScore W4313203473C138885662 @default.
- W4313203473 hasConceptScore W4313203473C154945302 @default.
- W4313203473 hasConceptScore W4313203473C187713609 @default.
- W4313203473 hasConceptScore W4313203473C199354608 @default.
- W4313203473 hasConceptScore W4313203473C206345919 @default.
- W4313203473 hasConceptScore W4313203473C2522767166 @default.
- W4313203473 hasConceptScore W4313203473C2524010 @default.
- W4313203473 hasConceptScore W4313203473C2777210771 @default.
- W4313203473 hasConceptScore W4313203473C2777710495 @default.
- W4313203473 hasConceptScore W4313203473C2779530757 @default.
- W4313203473 hasConceptScore W4313203473C31258907 @default.
- W4313203473 hasConceptScore W4313203473C33923547 @default.
- W4313203473 hasConceptScore W4313203473C38652104 @default.
- W4313203473 hasConceptScore W4313203473C41008148 @default.
- W4313203473 hasConceptScore W4313203473C50644808 @default.
- W4313203473 hasConceptScore W4313203473C75684735 @default.
- W4313203473 hasConceptScore W4313203473C81860439 @default.
- W4313203473 hasLocation W43132034731 @default.
- W4313203473 hasOpenAccess W4313203473 @default.