Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313203495> ?p ?o ?g. }
- W4313203495 abstract "Designing polymeric membranes with high solute-solute selectivity and permeance is important but technically challenging. Existing industrial interfacial polymerization (IP) process to fabricate polyamide-based polymeric membranes is largely empirical, which requires enormous trial-and-error experimentations to identify optimal fabrication conditions from a wide candidate space for separating a given solute pair. Herein, we developed a novel multitask machine learning (ML) model based on an artificial neural network (ANN) with skip connections and selectivity regularization to guide the design of polyamide membranes. We used limited sets of lab-collected data to obtain satisfactory model performance over four iterations by introducing human expert experience in the online learning process. Four membranes under fabrication conditions guided by the model exceeded the present upper bound for mono/divalent ion selectivity and permeance of the polymeric membranes. Moreover, we obtained new mechanistic insights into the membrane design through feature analysis of the model. Our work demonstrates a ML approach that represents a paradigm shift for high-performance polymeric membranes design." @default.
- W4313203495 created "2023-01-06" @default.
- W4313203495 creator A5020502914 @default.
- W4313203495 creator A5022292909 @default.
- W4313203495 creator A5041945087 @default.
- W4313203495 creator A5058314532 @default.
- W4313203495 creator A5063756260 @default.
- W4313203495 creator A5078276166 @default.
- W4313203495 creator A5045688732 @default.
- W4313203495 date "2022-12-28" @default.
- W4313203495 modified "2023-10-01" @default.
- W4313203495 title "Machine Learning Guided Polyamide Membrane with Exceptional Solute–Solute Selectivity and Permeance" @default.
- W4313203495 cites W1678356000 @default.
- W4313203495 cites W1975083642 @default.
- W4313203495 cites W1995048824 @default.
- W4313203495 cites W2012270576 @default.
- W4313203495 cites W2016625509 @default.
- W4313203495 cites W2026256593 @default.
- W4313203495 cites W2063054674 @default.
- W4313203495 cites W2072274571 @default.
- W4313203495 cites W2076973118 @default.
- W4313203495 cites W2090538517 @default.
- W4313203495 cites W2093097240 @default.
- W4313203495 cites W2102636708 @default.
- W4313203495 cites W2332136976 @default.
- W4313203495 cites W2625153997 @default.
- W4313203495 cites W2890075759 @default.
- W4313203495 cites W2896641631 @default.
- W4313203495 cites W2917234733 @default.
- W4313203495 cites W2963683265 @default.
- W4313203495 cites W3007578485 @default.
- W4313203495 cites W3015364947 @default.
- W4313203495 cites W3017697247 @default.
- W4313203495 cites W3024556032 @default.
- W4313203495 cites W3026992920 @default.
- W4313203495 cites W3034715324 @default.
- W4313203495 cites W3037448614 @default.
- W4313203495 cites W3047425455 @default.
- W4313203495 cites W3092077742 @default.
- W4313203495 cites W3094316335 @default.
- W4313203495 cites W3104887647 @default.
- W4313203495 cites W3119829667 @default.
- W4313203495 cites W3129173798 @default.
- W4313203495 cites W3134254041 @default.
- W4313203495 cites W3149281359 @default.
- W4313203495 cites W3153940639 @default.
- W4313203495 cites W3195037686 @default.
- W4313203495 cites W3197890802 @default.
- W4313203495 cites W4200027750 @default.
- W4313203495 cites W4200316926 @default.
- W4313203495 cites W4210378589 @default.
- W4313203495 cites W4210602991 @default.
- W4313203495 cites W4223995340 @default.
- W4313203495 cites W4224236348 @default.
- W4313203495 cites W4281852668 @default.
- W4313203495 cites W4281923223 @default.
- W4313203495 doi "https://doi.org/10.1021/acs.est.2c05571" @default.
- W4313203495 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36576929" @default.
- W4313203495 hasPublicationYear "2022" @default.
- W4313203495 type Work @default.
- W4313203495 citedByCount "3" @default.
- W4313203495 countsByYear W43132034952023 @default.
- W4313203495 crossrefType "journal-article" @default.
- W4313203495 hasAuthorship W4313203495A5020502914 @default.
- W4313203495 hasAuthorship W4313203495A5022292909 @default.
- W4313203495 hasAuthorship W4313203495A5041945087 @default.
- W4313203495 hasAuthorship W4313203495A5045688732 @default.
- W4313203495 hasAuthorship W4313203495A5058314532 @default.
- W4313203495 hasAuthorship W4313203495A5063756260 @default.
- W4313203495 hasAuthorship W4313203495A5078276166 @default.
- W4313203495 hasConcept C118792377 @default.
- W4313203495 hasConcept C154945302 @default.
- W4313203495 hasConcept C161790260 @default.
- W4313203495 hasConcept C178790620 @default.
- W4313203495 hasConcept C185592680 @default.
- W4313203495 hasConcept C188027245 @default.
- W4313203495 hasConcept C190399342 @default.
- W4313203495 hasConcept C192562407 @default.
- W4313203495 hasConcept C21535326 @default.
- W4313203495 hasConcept C41008148 @default.
- W4313203495 hasConcept C41625074 @default.
- W4313203495 hasConcept C50670333 @default.
- W4313203495 hasConcept C55493867 @default.
- W4313203495 hasConceptScore W4313203495C118792377 @default.
- W4313203495 hasConceptScore W4313203495C154945302 @default.
- W4313203495 hasConceptScore W4313203495C161790260 @default.
- W4313203495 hasConceptScore W4313203495C178790620 @default.
- W4313203495 hasConceptScore W4313203495C185592680 @default.
- W4313203495 hasConceptScore W4313203495C188027245 @default.
- W4313203495 hasConceptScore W4313203495C190399342 @default.
- W4313203495 hasConceptScore W4313203495C192562407 @default.
- W4313203495 hasConceptScore W4313203495C21535326 @default.
- W4313203495 hasConceptScore W4313203495C41008148 @default.
- W4313203495 hasConceptScore W4313203495C41625074 @default.
- W4313203495 hasConceptScore W4313203495C50670333 @default.
- W4313203495 hasConceptScore W4313203495C55493867 @default.
- W4313203495 hasFunder F4320320751 @default.
- W4313203495 hasLocation W43132034951 @default.
- W4313203495 hasLocation W43132034952 @default.
- W4313203495 hasOpenAccess W4313203495 @default.