Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313203522> ?p ?o ?g. }
- W4313203522 endingPage "6609" @default.
- W4313203522 startingPage "6594" @default.
- W4313203522 abstract "Plant diseases are a severe cause of crop losses in the agriculture globally. Detection of diseases in plants is difficult and challenging due to the lack of expert knowledge. Deep learning-based models provide promising ways to identify plant diseases using leaf images. However, need of larger training sets, computational complexity, and overfitting, etc. are the major issues with these techniques that still need to be addressed. In this work, a convolutional neural network (CNN) is developed that consists of smaller number of layers leading to lower computational burden. Some augmentation techniques such as shift, shear, scaling, zoom, and flipping are applied to generate additional samples increasing the training set without actually capturing more images. The CNN model is trained for apple crop using a publicly available dataset PlantVillage to identify Scab, Black rot, and Cedar rust diseases in apple leaves. The rigorous experimental results revealed that the proposed model is well fit to identify apple leaf diseases and achieves 98% classification accuracy. It is also evident from the results that it needs lesser amount of storage and takes smaller execution time than several existing deep CNN models. Although, there exist several CNN models for crop disease detection with comparable accuracy, but the proposed model needs lower storage and computational resources. Therefore, it is highly suitable for deploying in handheld devices." @default.
- W4313203522 created "2023-01-06" @default.
- W4313203522 creator A5013140248 @default.
- W4313203522 creator A5030330846 @default.
- W4313203522 creator A5045463867 @default.
- W4313203522 creator A5069083128 @default.
- W4313203522 creator A5081860651 @default.
- W4313203522 date "2023-01-01" @default.
- W4313203522 modified "2023-10-14" @default.
- W4313203522 title "Detection of Apple Plant Diseases Using Leaf Images Through Convolutional Neural Network" @default.
- W4313203522 cites W2405348951 @default.
- W4313203522 cites W2473156356 @default.
- W4313203522 cites W2548247561 @default.
- W4313203522 cites W2585286277 @default.
- W4313203522 cites W2758007480 @default.
- W4313203522 cites W2769636271 @default.
- W4313203522 cites W2786538427 @default.
- W4313203522 cites W2789255992 @default.
- W4313203522 cites W2790578909 @default.
- W4313203522 cites W2792260488 @default.
- W4313203522 cites W2801303530 @default.
- W4313203522 cites W2908112616 @default.
- W4313203522 cites W2921403460 @default.
- W4313203522 cites W2934580386 @default.
- W4313203522 cites W2938959907 @default.
- W4313203522 cites W2944599236 @default.
- W4313203522 cites W2969364300 @default.
- W4313203522 cites W2970576551 @default.
- W4313203522 cites W3021970402 @default.
- W4313203522 cites W3047646350 @default.
- W4313203522 cites W3081966421 @default.
- W4313203522 cites W3082289303 @default.
- W4313203522 cites W3082480853 @default.
- W4313203522 cites W3095692458 @default.
- W4313203522 cites W3109852393 @default.
- W4313203522 cites W3120188592 @default.
- W4313203522 cites W3134717070 @default.
- W4313203522 cites W3135999592 @default.
- W4313203522 cites W3157087401 @default.
- W4313203522 cites W3166424296 @default.
- W4313203522 cites W3201427442 @default.
- W4313203522 cites W4200459217 @default.
- W4313203522 cites W4223984460 @default.
- W4313203522 cites W4245407657 @default.
- W4313203522 cites W4285004946 @default.
- W4313203522 cites W4288065729 @default.
- W4313203522 doi "https://doi.org/10.1109/access.2022.3232917" @default.
- W4313203522 hasPublicationYear "2023" @default.
- W4313203522 type Work @default.
- W4313203522 citedByCount "7" @default.
- W4313203522 countsByYear W43132035222023 @default.
- W4313203522 crossrefType "journal-article" @default.
- W4313203522 hasAuthorship W4313203522A5013140248 @default.
- W4313203522 hasAuthorship W4313203522A5030330846 @default.
- W4313203522 hasAuthorship W4313203522A5045463867 @default.
- W4313203522 hasAuthorship W4313203522A5069083128 @default.
- W4313203522 hasAuthorship W4313203522A5081860651 @default.
- W4313203522 hasBestOaLocation W43132035221 @default.
- W4313203522 hasConcept C108583219 @default.
- W4313203522 hasConcept C115961682 @default.
- W4313203522 hasConcept C119857082 @default.
- W4313203522 hasConcept C150903083 @default.
- W4313203522 hasConcept C153180895 @default.
- W4313203522 hasConcept C154945302 @default.
- W4313203522 hasConcept C177264268 @default.
- W4313203522 hasConcept C199360897 @default.
- W4313203522 hasConcept C22019652 @default.
- W4313203522 hasConcept C3019235130 @default.
- W4313203522 hasConcept C41008148 @default.
- W4313203522 hasConcept C50644808 @default.
- W4313203522 hasConcept C75294576 @default.
- W4313203522 hasConcept C81363708 @default.
- W4313203522 hasConcept C86803240 @default.
- W4313203522 hasConceptScore W4313203522C108583219 @default.
- W4313203522 hasConceptScore W4313203522C115961682 @default.
- W4313203522 hasConceptScore W4313203522C119857082 @default.
- W4313203522 hasConceptScore W4313203522C150903083 @default.
- W4313203522 hasConceptScore W4313203522C153180895 @default.
- W4313203522 hasConceptScore W4313203522C154945302 @default.
- W4313203522 hasConceptScore W4313203522C177264268 @default.
- W4313203522 hasConceptScore W4313203522C199360897 @default.
- W4313203522 hasConceptScore W4313203522C22019652 @default.
- W4313203522 hasConceptScore W4313203522C3019235130 @default.
- W4313203522 hasConceptScore W4313203522C41008148 @default.
- W4313203522 hasConceptScore W4313203522C50644808 @default.
- W4313203522 hasConceptScore W4313203522C75294576 @default.
- W4313203522 hasConceptScore W4313203522C81363708 @default.
- W4313203522 hasConceptScore W4313203522C86803240 @default.
- W4313203522 hasFunder F4320322335 @default.
- W4313203522 hasLocation W43132035221 @default.
- W4313203522 hasOpenAccess W4313203522 @default.
- W4313203522 hasPrimaryLocation W43132035221 @default.
- W4313203522 hasRelatedWork W2470368200 @default.
- W4313203522 hasRelatedWork W2742991909 @default.
- W4313203522 hasRelatedWork W2766604260 @default.
- W4313203522 hasRelatedWork W2767651786 @default.
- W4313203522 hasRelatedWork W2986507176 @default.
- W4313203522 hasRelatedWork W3012393889 @default.