Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313203583> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4313203583 endingPage "11773" @default.
- W4313203583 startingPage "11764" @default.
- W4313203583 abstract "Degradation modeling aims to formulate the health state degradation process of machinery. Commonly used degradation models pay more attention to describing the global increasing or decreasing trend without considering the local fluctuation in the degradation process. To deal with the above issue, this paper proposes a multi-model fusion degradation modeling method. The basic idea is to fuse multiple models to describe various degradation trends of machinery involving the global trend as well as the local fluctuation. A generalized statistical degradation modeling framework is constructed, wherein the degradation process is formulated by fusing multiple models with various degradation trends. The failure event is reinterpreted under the condition of state observations fluctuating around the failure threshold. The probability density functions (PDFs) of the time when the state observation exceeds and drops below the failure threshold are derived, respectively. An iterative matching pursuit (IMP) algorithm is developed to select the optimal models adaptively. A numerical illustration and an experimental study are conducted to verify the proposed method. The results demonstrate its superiority in health prognostics compared with two benchmark methods in cases where the degradation process has dominant local fluctuation." @default.
- W4313203583 created "2023-01-06" @default.
- W4313203583 creator A5008554873 @default.
- W4313203583 creator A5034397414 @default.
- W4313203583 creator A5044245613 @default.
- W4313203583 creator A5049448297 @default.
- W4313203583 creator A5081626297 @default.
- W4313203583 date "2023-11-01" @default.
- W4313203583 modified "2023-10-16" @default.
- W4313203583 title "Machinery Health Prognostics With Multimodel Fusion Degradation Modeling" @default.
- W4313203583 cites W1932372884 @default.
- W4313203583 cites W2020307154 @default.
- W4313203583 cites W2055873761 @default.
- W4313203583 cites W2059401976 @default.
- W4313203583 cites W2062613656 @default.
- W4313203583 cites W2108898839 @default.
- W4313203583 cites W2114106396 @default.
- W4313203583 cites W2152270473 @default.
- W4313203583 cites W2157457477 @default.
- W4313203583 cites W2417225786 @default.
- W4313203583 cites W2463813940 @default.
- W4313203583 cites W2513769405 @default.
- W4313203583 cites W2516566105 @default.
- W4313203583 cites W2554275686 @default.
- W4313203583 cites W2591645937 @default.
- W4313203583 cites W2773549135 @default.
- W4313203583 cites W2904460913 @default.
- W4313203583 cites W2911247402 @default.
- W4313203583 cites W3165797086 @default.
- W4313203583 cites W3175239308 @default.
- W4313203583 cites W3196026889 @default.
- W4313203583 cites W4239218596 @default.
- W4313203583 cites W4251214264 @default.
- W4313203583 doi "https://doi.org/10.1109/tie.2022.3231273" @default.
- W4313203583 hasPublicationYear "2023" @default.
- W4313203583 type Work @default.
- W4313203583 citedByCount "0" @default.
- W4313203583 crossrefType "journal-article" @default.
- W4313203583 hasAuthorship W4313203583A5008554873 @default.
- W4313203583 hasAuthorship W4313203583A5034397414 @default.
- W4313203583 hasAuthorship W4313203583A5044245613 @default.
- W4313203583 hasAuthorship W4313203583A5049448297 @default.
- W4313203583 hasAuthorship W4313203583A5081626297 @default.
- W4313203583 hasConcept C111919701 @default.
- W4313203583 hasConcept C119599485 @default.
- W4313203583 hasConcept C124101348 @default.
- W4313203583 hasConcept C127413603 @default.
- W4313203583 hasConcept C129364497 @default.
- W4313203583 hasConcept C13280743 @default.
- W4313203583 hasConcept C141353440 @default.
- W4313203583 hasConcept C185798385 @default.
- W4313203583 hasConcept C200601418 @default.
- W4313203583 hasConcept C205649164 @default.
- W4313203583 hasConcept C2779679103 @default.
- W4313203583 hasConcept C41008148 @default.
- W4313203583 hasConcept C76155785 @default.
- W4313203583 hasConcept C98045186 @default.
- W4313203583 hasConceptScore W4313203583C111919701 @default.
- W4313203583 hasConceptScore W4313203583C119599485 @default.
- W4313203583 hasConceptScore W4313203583C124101348 @default.
- W4313203583 hasConceptScore W4313203583C127413603 @default.
- W4313203583 hasConceptScore W4313203583C129364497 @default.
- W4313203583 hasConceptScore W4313203583C13280743 @default.
- W4313203583 hasConceptScore W4313203583C141353440 @default.
- W4313203583 hasConceptScore W4313203583C185798385 @default.
- W4313203583 hasConceptScore W4313203583C200601418 @default.
- W4313203583 hasConceptScore W4313203583C205649164 @default.
- W4313203583 hasConceptScore W4313203583C2779679103 @default.
- W4313203583 hasConceptScore W4313203583C41008148 @default.
- W4313203583 hasConceptScore W4313203583C76155785 @default.
- W4313203583 hasConceptScore W4313203583C98045186 @default.
- W4313203583 hasFunder F4320321001 @default.
- W4313203583 hasFunder F4320321543 @default.
- W4313203583 hasFunder F4320335787 @default.
- W4313203583 hasIssue "11" @default.
- W4313203583 hasLocation W43132035831 @default.
- W4313203583 hasOpenAccess W4313203583 @default.
- W4313203583 hasPrimaryLocation W43132035831 @default.
- W4313203583 hasRelatedWork W1485630101 @default.
- W4313203583 hasRelatedWork W2055144404 @default.
- W4313203583 hasRelatedWork W2070338563 @default.
- W4313203583 hasRelatedWork W2143585755 @default.
- W4313203583 hasRelatedWork W2383842997 @default.
- W4313203583 hasRelatedWork W2498017833 @default.
- W4313203583 hasRelatedWork W2557573737 @default.
- W4313203583 hasRelatedWork W3037944824 @default.
- W4313203583 hasRelatedWork W4313203583 @default.
- W4313203583 hasRelatedWork W2100845289 @default.
- W4313203583 hasVolume "70" @default.
- W4313203583 isParatext "false" @default.
- W4313203583 isRetracted "false" @default.
- W4313203583 workType "article" @default.