Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313203709> ?p ?o ?g. }
- W4313203709 endingPage "24646" @default.
- W4313203709 startingPage "24634" @default.
- W4313203709 abstract "Predictive solution techniques have been developed recently to solve the massive access problem of the Internet of Things (IoT). These techniques forecast the traffic generation patterns of individual IoT devices in the coverage area of an IoT gateway and schedule the Medium Access Control (MAC)-layer resources at the gateway in advance based on these forecasts. Although predictive solutions have achieved high network performance, a key problem is that their performance depends highly on the performance of forecasters. In this article, to minimize the effects of forecasting errors on the performance of predictive networks, we develop a subspace-based forecasting algorithm called “Motion On a Subspace under Adaptive Learning rate (MOSAL).” First, our algorithm trains a forecaster by minimizing the performance loss of an IoT network based on the emulation of an Application-Specific Error Function (ASEF) by an Artificial Neural Network (ANN). Second, the algorithm moves close to a subspace of the forecasting errors while aiming to maximize network throughput. Our results show that MOSAL achieves a throughput performance that surpasses the performance of commonly used standard gradient descent training algorithms at a reasonable execution time. These results open the way to the deployment of predictive solutions at IoT gateways in practice in the near future." @default.
- W4313203709 created "2023-01-06" @default.
- W4313203709 creator A5005433779 @default.
- W4313203709 creator A5019187933 @default.
- W4313203709 creator A5063349801 @default.
- W4313203709 creator A5077574745 @default.
- W4313203709 date "2022-12-15" @default.
- W4313203709 modified "2023-09-24" @default.
- W4313203709 title "MOSAL: A Subspace-Based Forecasting Algorithm for Throughput Maximization in IoT Networks" @default.
- W4313203709 cites W1513013675 @default.
- W4313203709 cites W1971698822 @default.
- W4313203709 cites W1974037141 @default.
- W4313203709 cites W2001710019 @default.
- W4313203709 cites W2018457004 @default.
- W4313203709 cites W2042768148 @default.
- W4313203709 cites W2088213547 @default.
- W4313203709 cites W2109094355 @default.
- W4313203709 cites W2110767187 @default.
- W4313203709 cites W2120412670 @default.
- W4313203709 cites W2123503096 @default.
- W4313203709 cites W2134432876 @default.
- W4313203709 cites W2137434758 @default.
- W4313203709 cites W2154189032 @default.
- W4313203709 cites W2156142937 @default.
- W4313203709 cites W2158996530 @default.
- W4313203709 cites W2211092169 @default.
- W4313203709 cites W2343404382 @default.
- W4313203709 cites W2441759193 @default.
- W4313203709 cites W2470009164 @default.
- W4313203709 cites W2551195109 @default.
- W4313203709 cites W2583833101 @default.
- W4313203709 cites W2591732277 @default.
- W4313203709 cites W2592045751 @default.
- W4313203709 cites W2595800070 @default.
- W4313203709 cites W2754446746 @default.
- W4313203709 cites W2767103566 @default.
- W4313203709 cites W2769816839 @default.
- W4313203709 cites W2782683212 @default.
- W4313203709 cites W2783201430 @default.
- W4313203709 cites W2790479519 @default.
- W4313203709 cites W2886627305 @default.
- W4313203709 cites W2890736047 @default.
- W4313203709 cites W2908270258 @default.
- W4313203709 cites W2940764495 @default.
- W4313203709 cites W2946839123 @default.
- W4313203709 cites W2955067406 @default.
- W4313203709 cites W2958780305 @default.
- W4313203709 cites W2963035276 @default.
- W4313203709 cites W2963409175 @default.
- W4313203709 cites W2963414086 @default.
- W4313203709 cites W2964152472 @default.
- W4313203709 cites W2990366449 @default.
- W4313203709 cites W2995589933 @default.
- W4313203709 cites W3003332891 @default.
- W4313203709 cites W3011023724 @default.
- W4313203709 cites W3023846749 @default.
- W4313203709 cites W3034650666 @default.
- W4313203709 cites W3038077692 @default.
- W4313203709 cites W3043015979 @default.
- W4313203709 cites W3081240071 @default.
- W4313203709 cites W3092059712 @default.
- W4313203709 cites W3098331759 @default.
- W4313203709 cites W3102303919 @default.
- W4313203709 cites W3117675108 @default.
- W4313203709 cites W3117711547 @default.
- W4313203709 cites W3119300242 @default.
- W4313203709 cites W3132295354 @default.
- W4313203709 cites W3158906227 @default.
- W4313203709 cites W3178925370 @default.
- W4313203709 cites W3195891010 @default.
- W4313203709 cites W3213249954 @default.
- W4313203709 cites W3214660735 @default.
- W4313203709 cites W3216202724 @default.
- W4313203709 cites W4221080978 @default.
- W4313203709 cites W4290996725 @default.
- W4313203709 cites W4292476248 @default.
- W4313203709 cites W3015717212 @default.
- W4313203709 doi "https://doi.org/10.1109/jsen.2022.3219251" @default.
- W4313203709 hasPublicationYear "2022" @default.
- W4313203709 type Work @default.
- W4313203709 citedByCount "0" @default.
- W4313203709 crossrefType "journal-article" @default.
- W4313203709 hasAuthorship W4313203709A5005433779 @default.
- W4313203709 hasAuthorship W4313203709A5019187933 @default.
- W4313203709 hasAuthorship W4313203709A5063349801 @default.
- W4313203709 hasAuthorship W4313203709A5077574745 @default.
- W4313203709 hasConcept C111919701 @default.
- W4313203709 hasConcept C11413529 @default.
- W4313203709 hasConcept C119857082 @default.
- W4313203709 hasConcept C149810388 @default.
- W4313203709 hasConcept C154945302 @default.
- W4313203709 hasConcept C157764524 @default.
- W4313203709 hasConcept C162324750 @default.
- W4313203709 hasConcept C172205157 @default.
- W4313203709 hasConcept C2775924081 @default.
- W4313203709 hasConcept C32834561 @default.
- W4313203709 hasConcept C41008148 @default.
- W4313203709 hasConcept C50522688 @default.