Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313204045> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4313204045 abstract "Deep learning (DL)-assisted inverse mapping has shown promise in hydrological model calibration by directly estimating parameters from observations. However, the increasing computational demand for running the state-of-the-art hydrological model limits sufficient ensemble runs for its calibration. In this work, we present a novel knowledge-informed deep learning method that can efficiently conduct the calibration using a few hundred realizations. The method involves two steps. First, we determine decisive model parameters from a complete parameter set based on the mutual information (MI) between model responses and each parameter computed by a limited number of realizations (~50). Second, we perform more ensemble runs (e.g., several hundred) to generate the training sets for the inverse mapping, which selects informative model responses for estimating each parameter using MI-based parameter sensitivity. We applied this new DL-based method to calibrate a process-based integrated hydrological model, the Advanced Terrestrial Simulator (ATS), at Coal Creek Watershed, CO. The calibration is performed against observed stream discharge (Q) and remotely sensed evapotranspiration (ET) from the water year 2016 to 2018. Preliminary MI analysis on 50 realizations resulted in a down-selection of seven out of fourteen ATS model parameters. Then, we performed a complete MI analysis on 396 realizations and constructed the inverse mapping from informative responses to each of the selected parameters using a deep neural network. Compared with calibration using all observations, the new inverse mapping improves parameter estimations, thus enhancing the performance of ATS forward model runs. The Nash-Sutcliffe efficiency (NSE) of streamflow predictions increases from 0.65 to 0.80 when calibrating against Q alone. Using ET observation, on the other hand, does not show much improvement on the performance of ATS modeling mainly due to both the uncertainty of the remotely sensed product and the insufficient coverage of the model ET ensemble in capturing the observation. By using observed Q only, we further performed a multi-year analysis and show that Q is best simulated (NSE: 0.85) by including in calibration the dry year flow dynamics that shows more sensitivity to subsurface characteristics than the other wet years. Our success highlights the importance of leveraging data-driven knowledge in DL-assisted hydrological model calibration." @default.
- W4313204045 created "2023-01-06" @default.
- W4313204045 creator A5026692271 @default.
- W4313204045 date "2022-12-28" @default.
- W4313204045 modified "2023-09-26" @default.
- W4313204045 title "Reply on RC2" @default.
- W4313204045 doi "https://doi.org/10.5194/hess-2022-282-ac2" @default.
- W4313204045 hasPublicationYear "2022" @default.
- W4313204045 type Work @default.
- W4313204045 citedByCount "0" @default.
- W4313204045 crossrefType "peer-review" @default.
- W4313204045 hasAuthorship W4313204045A5026692271 @default.
- W4313204045 hasBestOaLocation W43132040451 @default.
- W4313204045 hasConcept C105795698 @default.
- W4313204045 hasConcept C11413529 @default.
- W4313204045 hasConcept C119857082 @default.
- W4313204045 hasConcept C124101348 @default.
- W4313204045 hasConcept C126197015 @default.
- W4313204045 hasConcept C127313418 @default.
- W4313204045 hasConcept C127413603 @default.
- W4313204045 hasConcept C150547873 @default.
- W4313204045 hasConcept C154945302 @default.
- W4313204045 hasConcept C165838908 @default.
- W4313204045 hasConcept C167928553 @default.
- W4313204045 hasConcept C176783924 @default.
- W4313204045 hasConcept C18903297 @default.
- W4313204045 hasConcept C207467116 @default.
- W4313204045 hasConcept C21200559 @default.
- W4313204045 hasConcept C24326235 @default.
- W4313204045 hasConcept C2524010 @default.
- W4313204045 hasConcept C33923547 @default.
- W4313204045 hasConcept C41008148 @default.
- W4313204045 hasConcept C49204034 @default.
- W4313204045 hasConcept C50644808 @default.
- W4313204045 hasConcept C62649853 @default.
- W4313204045 hasConcept C86803240 @default.
- W4313204045 hasConceptScore W4313204045C105795698 @default.
- W4313204045 hasConceptScore W4313204045C11413529 @default.
- W4313204045 hasConceptScore W4313204045C119857082 @default.
- W4313204045 hasConceptScore W4313204045C124101348 @default.
- W4313204045 hasConceptScore W4313204045C126197015 @default.
- W4313204045 hasConceptScore W4313204045C127313418 @default.
- W4313204045 hasConceptScore W4313204045C127413603 @default.
- W4313204045 hasConceptScore W4313204045C150547873 @default.
- W4313204045 hasConceptScore W4313204045C154945302 @default.
- W4313204045 hasConceptScore W4313204045C165838908 @default.
- W4313204045 hasConceptScore W4313204045C167928553 @default.
- W4313204045 hasConceptScore W4313204045C176783924 @default.
- W4313204045 hasConceptScore W4313204045C18903297 @default.
- W4313204045 hasConceptScore W4313204045C207467116 @default.
- W4313204045 hasConceptScore W4313204045C21200559 @default.
- W4313204045 hasConceptScore W4313204045C24326235 @default.
- W4313204045 hasConceptScore W4313204045C2524010 @default.
- W4313204045 hasConceptScore W4313204045C33923547 @default.
- W4313204045 hasConceptScore W4313204045C41008148 @default.
- W4313204045 hasConceptScore W4313204045C49204034 @default.
- W4313204045 hasConceptScore W4313204045C50644808 @default.
- W4313204045 hasConceptScore W4313204045C62649853 @default.
- W4313204045 hasConceptScore W4313204045C86803240 @default.
- W4313204045 hasLocation W43132040451 @default.
- W4313204045 hasOpenAccess W4313204045 @default.
- W4313204045 hasPrimaryLocation W43132040451 @default.
- W4313204045 hasRelatedWork W118464327 @default.
- W4313204045 hasRelatedWork W2021923021 @default.
- W4313204045 hasRelatedWork W2086542880 @default.
- W4313204045 hasRelatedWork W2124738823 @default.
- W4313204045 hasRelatedWork W2155440015 @default.
- W4313204045 hasRelatedWork W2169774346 @default.
- W4313204045 hasRelatedWork W2352916729 @default.
- W4313204045 hasRelatedWork W2518588335 @default.
- W4313204045 hasRelatedWork W2767176385 @default.
- W4313204045 hasRelatedWork W3215627270 @default.
- W4313204045 isParatext "false" @default.
- W4313204045 isRetracted "false" @default.
- W4313204045 workType "peer-review" @default.